

LEXON
0.3.5.9.3

DRAFT 3
Lexon is under development. The concrete facts and examples
in this book will be replaced by better iterations fast. The gen-
eral principles described will hold. Visit www.Lexon.tech.

BEST BEFORE APRIL 2020

TM

 ii

The information provided in this book is strictly for educational
purposes. Although considerable effort has been made to en-
sure that the information was correct at time of writing, there
are no representations or warranties, express or implied, about
the completeness, accuracy, reliability, suitability or availability
with respect to the information, products, services, or related
graphics contained in this book for any purpose. Any use of this
information is at your own risk. The author does not assume
and hereby disclaims any liability to any party for any loss, dam-
age, or disruption caused by errors or omissions, whether such
errors or omissions result from accident, negligence, or any
other cause. The information described within this book are the
author’s personal thoughts. It is not intended to be a definitive
set of instructions for any project. There may be other technol-
ogies or materials not covered. It is recommended that you
consult a technologist for the needs of your particular project.

0.3.5.9.3
DRAFT 3

Please send feedback to
lexon.book@gmail.com

Copyright © 2020 Henning Diedrich
all rights reserved, except see page v

Lexon code and design © 2019-20 Lexon Foundation
under GNU Public License 3, see page v

Lexon logo trademark 2018 Lexon Foundation
www.lexon.tech

ISBN 978-1697747683
https://www.amazon.com/dp/169774768X

PLEASE SEND YOUR FEEDBACK,
THOUGHTS AND CRITICISM TO

LEXON.BOOK@GMAIL.COM

I AM HAPPY TO ACKNOWLEDGE
YOUR NAME IN THE CREDITS

IF YOU DON'T OBJECT

FOR UPDATES ON LEXON, JOIN THE
LEXON MAILING LIST

LIST.LEXON.TECH

TRY THE
ONLINE TUTORIAL

LEXON.TECH/TUTORIAL

WRITE AND DEPLOY CONTRACTS:
ONLINE EDITOR

DEMO.LEXON.TECH

WWW.LEXON.TECH

iv

About Lexon

Lexon is a computer language that anyone can read.

It was made for blockchain smart contracts and can be used to
write normal contracts that work as blockchain smart contracts:
with Lexon, the same text is both program and legal agree-
ment. This is useful for any organization that wants its smart
contracts, or any program it uses, on- or off-chain, to be read-
able for all its members. It works for legal agreements as well
as for internal process flow or high-level business logic. Law-
makers can write 'Robotic Laws' in it that machines can read.

Lexon is a programming language, based on advanced para-
digms, implemented using mainstream compiler technology.
Find updates about Lexon at https://www.Lexon.tech.

About this Book

In non-technical terms, this book explains Digital Contracts:
legally enforceable smart contracts that anyone can read.
You do NOT need prior knowledge about blockchains.

The book outlines the concept, gives examples, provides links
to online tools that help to write, sign, deploy and manage dig-
ital contracts on the blockchain. Lexon’s grammar, vocabulary
and document structure are illustrated. Its paradigm is ex-
plained, including how it differs from other programming lan-
guages, staying closer to human thought. Lexon’s relationship
to Computational Law and AI is discussed and applications and
benefits are detailed. The appendix lists notable steps towards
human-readability by other programming languages, comple-
mented with notes on constructed human languages.

The more voluminous Lexon Bible adds details like the lan-
guage reference: https://www.amazon.com/dp/1656262665.

 v

Credits

Thank you for your contributions to Lexon to:

Carla Reyes, Brian Fox, Thomas Hardjono, T. J. Saw,
Xenya Serova, Constance Choi, Marcelo Alaniz,
Nicolas Guzzo, Benedikt Schuppli, Nikolas Guggenberger,
Harald Stieber, Tom Montgomery, Yanislav Malahov,
Dominic Williams, Florian Glatz, Oliver Goodenough,
David Bovill, Anja Blaj, Marina Markezic, Stan Stalnaker,
Ed Hesse and Dan Barnhizer.

Thank you for making this a better book to:

Carla Reyes, Florian Idelberger, Tom Montgomery, Linus
Lindgren, Anja Blaj, Dazza Greenwood, and Walter Berger.

Copyright

You may reproduce any part of this book for courses you
give at a school or university. Otherwise see page ii.

What you write in Lexon is yours. At least not ours.

The Lexon compiler is Open Source, free and available for
download at https://gitlab.com/lexon-foundation/lexon-rust.
It and all source examples in this book unless marked other-
wise, are licensed under the GNU General Public License, as
found at https://www.gnu.org/licenses/gpl-3.0.html.

 vi

Table of Contents
About Lexon .. iv
About this Book ... iv
Credits ... v
Copyright .. v
Table of Contents .. vi
Introduction .. 1

DIGITAL CONTRACTS ... 3
The Escrow Example Explained ... 13
Online Editor and Deployment .. 17
Solidity Output ... 18
Taxonomy .. 20
Human-Readability .. 23
Natural Language Programming ... 26

THE LANGUAGE .. 29
Vocabulary .. 31
Sentence Grammar .. 36
Document Structure .. 37
The Double Edge of Language .. 40

EXAMPLES .. 43
UCC Financing Statement ... 45
Service Agreement with Escrow ... 49
The Moloch DAO ... 51

COMPUTATIONAL LAW ... 61
Law and Logic ... 63
Types of Ambiguity .. 64
The Limits of Deduction .. 69
The Evolution of Logic ... 71
The Reality of Programming ... 76
Higher-Order Logic ... 79
The Boolean Truth of Efficient Breach 80
Sufficient Probability as Facts ... 83
Types ... 86

PROCESSING MEANING ... 89
Abstract Syntax Trees .. 91
What Use is an AST? .. 95
ASTs and Natural Language .. 103
Artificial Intelligence Tooling ... 110
Meaning ... 116

 vii

SCOPE OF APPLICATION ... 121
Output & Portability .. 122
Multi-Lingual and Multi-Jurisdictional Code 124
Analysis ... 125

DOMAINS OF APPLICATION .. 127
Private Contracting Long Tail .. 128
Terms of Service .. 128
Decentralized Autonomous Organizations 128
AI Safety & Data Protection .. 129
Trade ... 129
Ex-Ante Regulation ... 130
RegTech & Oversight .. 130
Law .. 131
Governance .. 131
Bills of Exchange ... 132
Financial Instruments & DeFi ... 132
Provenance .. 133
Academic Certification ... 133
Supply Chain & Trade Finance .. 134
Logistics & Ride-Sharing ... 134
Future-Proofing ... 135
Escrow ... 135
Wills ... 136
Crowdfunding .. 136
Mutual and Retail Insurance ... 137
Information Sale and Sharing .. 137
Digital Asset Markets .. 138

MOTIVATION ... 139
APPENDIX I: RESOURCES .. 147
APPENDIX II: BLOCKCHAINS & SMART CONTRACTS ... 149
APPENDIX III: COMPUTER LANGUAGES BASED ON

NATURAL LANGUAGE ... 153
APPENDIX IV: CONSTRUCTED HUMAN LANGUAGES ... 163
APPENDIX V: BUILDING FROM SOURCE 177
FIGURES ... 181
AUTHOR ... 183

 1

Introduction
Programs that anyone can read. Legalese that just works.

A new profession will rise, maybe not from the ashes, but from
the very much altered, evolved body of the legal profession:
the legal engineer.

Lexon will not replace lawyers, much less coders. But
change is around the corner. Like book stores and all of retail,
the internet keeps shaking up our world in fundamental ways,
often hard to imagine. Entrenched players have learned the
hard way that bits and bytes can be sound and light. Now,
thanks to blockchain, bytes can be money.

Money more real than your money, actually. Not just bank
account 'money' that any banker will tell you is but an idle
promise. Money more like central bank money that today only
the banks have. That's huge in itself. Lexon hypercharges it.

Contracts funnel money. Imagine they could be made to
automatically, unbreakably perform. That's a smart contract.
Imagine further you could write such a contract, on your com-
puter like you always did, in plain English. And 'magically' it
took care of itself, the receipts, the billing, the handling of edge
cases, just as written. And as far as the payment side is con-
cerned, it can't be broken. As connoisseurs will tell you, this
changes the fundamental power equations of contracting. It
will change not just legal practice but negotiations, risk esti-
mates, financial planning, commerce. That's around the corner.

Lexon helps navigating this change, joining the old with
the new, the power of the word with the power of the electron,
and by this makes blockchain technology accessible in an ut-
terly unexpected way that will touch many walks of life.

This book is for everyone who is curious and has an open
mind. You will find use for Lexon that no-one thought of.

 3

DIGITAL
CONTRACTS

This is a self-executable blockchain1 smart contract,
and also the text of a legally enforceable agreement:

LEX Escrow.

“Payer” is a person.
“Payee” is a person.
“Agent” is a person.
“Fee” is an amount.

The Payer pays an Amount into escrow, appoints the Payee,
appoints the Agent, and also fixes the Fee.

CLAUSE: Pay Out.
The Agent may pay from escrow the Fee to themselves,
and afterwards pay the remainder of the escrow to the Payee.

CLAUSE: Pay Back.
The Agent may pay from escrow the Fee to themselves,
and afterwards return the remainder of the escrow to the Payer.

Fig 1 – Lexon code example: Escrow

1 You don't need to know anything about blockchains to read this book. If
you want to read up on it, check out pg. 149.

Digital Contracts

LEXON 4 0.3.5.9.3

Anyone can read this text and understand what it means. It can
be shown to a judge, it can be understood by business partners
and customers as well as a company’s management and legal
department; and it can also – as is – be run as a program, for
example on a blockchain, i.e. as smart contract.

Soon, any type of program can be written this way. And
any type of agreement can be automated and made impossible
to be broken (pg. 6). This will uncouple business necessities
from the judicative and executive powers, their astronomical
costs and glacial speed. Digital Contracts cost pennies to set in
motion and can securely make any sum of money change hands
in minutes. This will be a game changer for a massive slice of
commercial activity and enable a long tail of private trade. It
will also change the standards for governance and government.

Blockchain technology was made by hackers for hackers2
– but with Lexon, anyone can read programs now without any
knowledge of programming. And thus, consumers, as well as
businesspeople, judges, jury members, even lawmakers,3 can
read any smart contract about which they might be tasked to
decide, investigate, legislate, to verify or enter. Through this,
contracting may become part of the definition of literacy and a
silver arrow in the quiver of democracy.

As lawyers confirm, the code in Fig 1 is a legally enforce-
able contract: it can be used to demonstrate to a judge what
the meeting of the minds of the parties to the contract was.
There are no style requirements for a contract. There can't be
any, or else a typo or poor grasp of grammar could render con-
tracts invalid. But smart contract code e.g. written in Solidity4
or Sophia5 would always lead to a battle of experts if brought
to court because non-programmers cannot read them.

2 Vitalik Buterin, the inventor of Ethereum says he wanted to empower devs.
3 For a real example of proposed legislation written in Lexon see pg. 71.
4 The program language of choice for the Ethereum blockchain, see pg. 16.
5 The program language of the Aeternity blockchain.

Digital Contracts

BEST BEFORE APRIL 2020 5 LEXON

Not all contracts need to be in writing. The ‘contract’ it-
self is always the abstract agreement of two parties, no matter
how it was expressed. A signed paper merely proves it. Now, a
readable, digitally signed program can prove and perform this
will.

The Document
Digital contracts are, in fact, computer programs that anyone
can read because they are coded in plain English that obeys
narrow limitations as to what words and grammatical rules can
be used. This is called controlled language (see pg. 115).

An example would be:

The Agent may send the money in escrow to the Payee.

Fig 2 – Lexon digital contract example sentence

This could be a sentence in a digital contract. This sentence
would give some person identified as Agent the option to pay
out the escrow, to whatever it amounts and whenever (!) the
Agent feels like it. This sentence also is program code that
when executed checks that it is really the Agent that is trying
to make the payout; and that makes sure the money goes to
the Payer and nowhere else. With a blockchain, there is no way
that the Agent or anyone else involved could redirect it. Note
how this is more powerful than an agreement with a human no-
tary. It is also much cheaper and faster. Also note that using the
special power of blockchain, this code itself completes the ac-
tual transfer of funds when triggered by the Agent. There is no
device behind or beyond that is triggered and does the actual
work. It is this very code, running on the chain, that effects the
change of the relevant account balances. Accounts are in the
end numbers and this code changes these numbers.

Digital Contracts

LEXON 6 0.3.5.9.3

A Lexon digital contract can be embedded in legal prose:
it can be part of a much larger legal document or it can be all
of it (pg. 20). It consists of four parts: head, definitions, recitals,
and clauses (pg. 13). There is some meta information in the
head. The definitions list the parties and other names used in
the contract. The recitals spell out what is to happen before
and at the beginning of the contract. The clauses describe what
options the parties to the contract have, and bring more defi-
nitions.

Optionality + Unbreakability
The word 'may' in the examples (Fig 1 and Fig 2) points to an
elemental distinction. Digital contracts, in so far as they are
blockchain smart contracts, cannot coerce any action. They can
send money and log statements. They cannot otherwise force
anyone to do anything. They typically operate on incentives in-
stead and utilize staking to broaden the applicability of this
principle: you may first have to pay something in that you will
lose if you don't perform your role. This is why the clauses in
digital contracts do not describe obligations and do not use
'must', 'shall' etc. Instead, they use 'may' and 'pay' a lot. This is
a blockchain aspect that Lexon digital contracts but reflect. It
is a different focus than usual for legal agreements but it is not
unheard of in the world of paper contracts either. A close hard
look reveals that obligations in contracts today are in reality of-
ten seen as mere options, and are treated as such, with the cost
of breach being an expected part of the corporate decision
matrix. This is called Efficient Breach (more about it on pg 80).

To the extent that it lists only options, smart contract
code is 'unbreakable,' the great achievement of blockchains. If
in the example above, the Agent decided to not act, 'the block-
chain' cannot prevent that. This would not count as 'breaking'
this code though, which does not read 'must pay' or 'shall pay:'
the example in Fig 2 just gave an option obviously, reading
'may pay.' And this option is not broken if the Agent does not

Digital Contracts

BEST BEFORE APRIL 2020 7 LEXON

pay. In a more involved example, a complementary clause
could be added to handle the fine that might hit an AWOL6
Agent. But no breach would result no matter how the Agent
chose to act or not act. The contract could be extended so that
if they don't act, they might lose a stake they had to pay in to
assume the role of Agent in the first place. However, if the
Agent acts, they can only do exactly what is written: pay the
escrow to the Payee. They cannot partially pay or pay to some-
one else (unless there is another clause giving that option). It is
within these confines that a smart contract is 'unbreakable.'
This is still a game changer, especially when being honest about
how contract obligations in business today are thought of as
options.

These special powers, and limitations of blockchains is
what leads to a focus on options instead of coercion in the
prose of digital contracts. Lexon did not invent this essential
feature of blockchain smart contracts, it just makes it much eas-
ier to see and to

Digital + Online
The text of a digital contract is on the one hand the legally en-
forceable agreement. Its function is as per usually to find clarity,
to remind, and, if necessary, to serve as evidence in court. The
same text is also translated by a program called the Lexon com-
piler (pg. 145) into code that can be executed on a blockchain.
The digital contract is translated into a smart contract. It can be
translated to different blockchains, at no cost. On the technical
level, Lexon creates code in the language Solidity (pg 17) to run
a smart contract on the Ethereum blockchain, or in the lan-
guage Sophia to run the contract on the Aeternity7 blockchain.

6 AWOL means temporarily deserted ("away without leave").
7 Aeternity is a blockchain notable for its engineering and tight integration
of oracles and state channels. – https://www.aeternity.com

Digital Contracts

LEXON 8 0.3.5.9.3

The language Motoko will be added for Dfinity,8 and other tar-
get platforms will follow. Lexon digital contracts will also be
running without any blockchain involved, for the myriad of sit-
uations where trust is not an issue. The technical details are of
no concern for a user of Lexon but the resulting flexibility
makes an investment in Lexon code future-proof: no matter
which blockchain or program language will win out, Lexon code
will very likely work for it. One of the major risky decisions and
up-front research tasks for any blockchain project today – what
platform to use – is cancelled out. Because it is open source, it
will always be possible to add what is missing or to cater to any
niche that might be relevant for a specific project.

To check out more examples and experience how this
works live, an online editor for Lexon digital contracts awaits at
http://demo.lexon.tech (pg. 20). It has examples that can
serve as a starting point for your own experimentation and al-
lows to deploy your digital contracts directly to a blockchain
mainnet or testnet,9 literally at the click of a button. The con-
tract can then be managed or test-driven using the contract
manager that appears in your browser.

The Contribution
To some extent, Lexon solves the major challenge of Compu-
tational Law (pg. 61) by enabling a precise, digitized represen-
tation of the actual 'meaning' of a contract. By design, Lexon
does not try Deontic logic beyond the atomic keyword 'may.'
It ducks the arithmetic problems of 'shall' and 'must,' namely
the ambiguity of their negations. Lexon stays with Boolean

8 Dfinity takes the blockchain mantra of the 'Internet Computer' to the next
level. – https://www.dfinity.org
9 Blockchains have technically identically sandboxes to test smart contracts.

Digital Contracts

BEST BEFORE APRIL 2020 9 LEXON

'true' and 'false' values instead (pg. 80), firmly based in its
origin from smart contracts, which are programs.10

This yields surprising mileage. For very procedural parts,
Lexon can even be used to articulate law (pg. 45). The home
game for Lexon though are contracts including three parties,
where eventually a payment is made. We will look at examples
for coded law, a general service contract (pg. 49) and a com-
plete DAO11 (pg. 51).

The basic idea to make programs more readable by build-
ing in natural language elements has been employed since the
1950ies (pg. 154). But it has not been attempted as compre-
hensively as Lexon proposes. The closest may be Attempto
Controlled English (ACE) that was developed at the ETH Zürich
in the 1990ies (pg. 174), to allow for logic reasoning based on
plain English input. Lexon reaches beyond this, towards pro-
grammability.

Linguistics + AI
Lexon currently has a vocabulary of about 130 words (pg. 31)
and a rather small rule set based on the English subject-verb-
object sentence grammar (pg. 36). This will grow and change
over time. The way that a Lexon document is structured (pg.
36) is an important meta aspect of the 'grammar' of Lexon code.
It has been shown to be very possible for non-programmers to
learn to write Lexon. In practice, picking it up will be more sim-
ilar to learning a natural language than Math or programming.12

10 Which is a modest way to say that Lexon is based on hundreds of years of
passionate research into logic that actually works. Starting at the latest with
the mathematician Leibniz, son of a jurist, grandson of a professor of law.
11 Decentralized Autonomous Organizations (DAOs) have money, rules, of-
ten human members. They are coded on a blockchain, cannot really be po-
liced or taken down and can of course go spectacularly wrong.
12 A tutorial is coming together at http://www.lexon.tech/tutorial

Digital Contracts

LEXON 10 0.3.5.9.3

Lexon is premised on the notion that AI that can truly read,
understand and process just any text is not around the corner.
Linguists of late are displaying more caution in their theories
about human language and thought. It's not as straight forward
as once hoped. Lexon employs simpler linguistic models of lan-
guage, which were in the 60ies thought to be capable of ex-
plaining natural language but have instead found success in
computer sciences: as the basis for tools to create program lan-
guages with. While linguistics has moved on, Lexon employs
these tools as they have evolved in computer sciences back to
natural language (pg. 61).

Lexon in this way 'shortcuts' the process of natural lan-
guage processing and, Jiu-Jitsu-style, implements what could
be called a pass-through principle: instead of trying to achieve
intelligent 'understanding' of its input, it excels at leaving the
fabric of its input intact all the way to the output. Instead of a
'destructive' analysis, Lexon keeps and uses the natural struc-
ture of language also internally. Logic is of course not condi-
tional upon awareness of it, and therefore, the absence of sen-
tience does not reduce Lexon's processing power. A lot of
things can be achieved without 'understanding' their meaning.
Like a good consultant, Lexon produces surprising output be-
cause it reflects the input back in a way that leaves material
parts of it intact. Accordingly, no representation of thought
other than the language input itself is attempted by the Lexon
compiler, i.e. no translation of meaning into bits and bytes. In-
stead, the basic devices of compiler building are turned on pro-
cessing natural language itself, as if it were a program.

The implications of this break new ground (pg. 121) and
empower Lexon to play a pivotal role as a nexus in blockchain
technology, almost as a side-effect: Lexon will be able to com-
pute different natural languages as input – Besides English,
German and Japanese have successfully been tested – and
Lexon will serve multiple blockchain platforms as target. Cur-
rently Ethereum and the Aeternity blockchain are supported.
Beyond this, within any natural language, different jurisdictions

Digital Contracts

BEST BEFORE APRIL 2020 11 LEXON

may be catered to, using programming principles called librar-
ies and frameworks. Transcending its origins, Lexon helps both
in many situations that have nothing to do with blockchain – as
'normal' stand-alone program – as well as for applications
where legal aspects may be less important, which are inter-
ested instead in the raw inclusive power of readable code.

Throughout, special value accrues from the novelty that
Lexon can digitize the 'meaning' of a text (pg. 61). The principle
works across different (human) input and (computer) output
languages. It can be used to analyze a document in different
ways. It can also be used to generate more powerful user inter-
faces to manage and interact with the programs and app
backends driven by Lexon code. It will allow for automated test-
ing, applying existing tools that are used to find program errors
to legal agreements. And it will allow to come to fast and error-
free economic judgements about the value of a contract.

Collapsing Two Worlds
The list of possible applications for Lexon is long and diverse
(pg. 127). It contains private contracting, Decentralized Auton-
omous Organizations (DAOs), robotics, trade, law, (ex-ante)
regulation, governance, regTech, terms of service, bills of ex-
change, financial instruments, provenance, academic certifica-
tion, supply-chain, logistics and ride sharing, future proofing of
blockchain projects, escrow solutions, wills, crowdfunding, mu-
tual and retail insurance, self-sovereign information sale and
sharing, and markets for digital assets.

The scope of Lexon's usefulness is relatively broad be-
cause the principle it implements is simple and new. It collapses
the legal and the programming world into one, in a hitherto
unexpected way, cancelling out a myriad of procedural steps
that had been required in the past to meaningfully connect
these two. This can be seen as elimination of technical debt. It
both obsoletes many tasks and make new things possible.

Digital Contracts

LEXON 12 0.3.5.9.3

The Democratization of Code
The example from Fig 1 is also found at the online editor demo
at http://demo.lexon.tech. The example has three parties to it
so you would be role playing to really test it out. Wearing the
Agent's hat, you would see how it takes but a click to eventually
facilitate the payout. A contract like this is safe, legally defend-
able, inexpensive, and the money is transferred within minutes.
For more examples, see pg. 41.

Note that Lexon digital contracts have a potential audi-
ence a thousand times the size of that of a smart contract writ-
ten in Solidity. This will push blockchain technology into the
mainstream and fuel a cornucopia of innovation. It may also be
the answer to the centuries-old riddle how contracts could
gainfully be articulated in a more rigorous and mathematical
way. But most of all, people asked to enter into such a smart
contract or become attached to a DAO built on them, can now
read for themselves what the actual agreement is. Without hav-
ing to trust the programmers. This supplies a link that was still
missing in the philosophy of decentralization and trustless-
ness:13 it democratizes smart contracts beyond developers.

A general counsel can now verify that the terms they ad-
vised are really what is expressed in the code of a smart con-
tract, e.g. to double check the compliance of decentralized de-
vices.

DAO communities can now articulate their DAOs such
that every member can read them. A single text can double as
both the smart contract code and the legal charta that allows
the DAO to become a legal person, own assets and shield its
members from liability.

13 'trustless' is what programmers like to call blockchain-technology: it is
supposed to mean 'substituting trust', i.e. allowing for transactions to be
possible as if there was trust, in situations where there is none.

Digital Contracts

BEST BEFORE APRIL 2020 13 LEXON

Society at large can use this language to articulate the
'Robotic Laws14' that we need to keep machines and services
honest: to set emergency decision rules for self-driving cars or
address the filter bubbles created in social media.

The Escrow Example Explained

The escrow example from pg. 3 consists of four parts:

• head
• definitions
• recitals
• clauses

HEAD

LEX Escrow Contract.

The head consists of the LEX keyword that marks the beginning
of executable code, and the freely given name after this

14 The science fiction author Isaac Asimov's coined the term Robotic Laws in
the 1940ies for the science fiction universe over-arching his short stories and
novels. He evolved them over time and showed how easily they can become
self-contradictory or exploitable by a rogue machine. The Laws are so often
quoted and well known in nerd culture that they will have informed many
discussions about real-world, consequential decision-making algorithms.
First Law – A robot may not injure a human being or, through inaction, allow
a human being to come to harm.
Second Law – A robot must obey the orders given it by human beings ex-
cept where such orders would conflict with the First Law.
Third Law – A robot must protect its own existence as long as such protec-
tion does not conflict with the First or Second Laws.
Isaac Asimov, 1950: I, Robot; pg. 40.
More on the laws: http://self.gutenberg.org/article/WHEBN0000060136/
Three%20Laws%20of%20Robotics

Digital Contracts

LEXON 14 0.3.5.9.3

keyword (in this case Escrow Contract) that identifies this con-
tract for filing and maintenance purposes. There can be more
information spelled out in the head, such as a revision number
and a preamble, or a comment.

To have a keyword like LEX is useful also for the legal per-
spective of a digital contract. In the case that the Lexon code
is embedded, e.g. as schedule of a larger master agreement, it
provides a clear separation between the automated parts and
the legal prose that might precede it. Because of this keyword,
LEX, Lexon digital contracts are NOT entirely seamlessly em-
bedded in the larger document prose that may surround them.
But if push comes to shove, a judge would at any rate never be
completely ignorant of the fact that there is automation in play
with a digital contract. Therefore, it will only help to have a clear
indication of where the text relevant for automation starts, to
reduce legal attack vectors.

An optional LEXON tag can occupy the next line. If it exists, it
is followed by a version number that indicates with which ver-
sion of Lexon the code will work. This is a concession to the fact
that Lexon is software and evolving at a rapid pace. Like the
name after LEX, this number simply helps keeping order.

A PREAMBLE is also optional. This keyword is followed by a
high-level description of the contract. In legalese, the 'pream-
ble' is the introduction to a contract that gives context and mo-
tivation but is itself not legally binding text. In Lexon, this text
is neither legally binding nor part of the automation.

Such an extended head could look like this:

LEX Escrow Contract.
LEXON 0.2
PREAMBLE: This is a simple digital contract example.

Digital Contracts

BEST BEFORE APRIL 2020 15 LEXON

DEFINITIONS

“Payer” is a person.
“Payee” is a person.
“Agent” is a person.
“Fee” is an amount.

Definitions are next. They are similar to what lawyers are used
to from normal contracts – and which programmers know as
type declarations. Because this code example is really a tem-
plate – i.e. not a concrete instance of a concrete agreement yet
– the concrete name, address, or blockchain address are not
yet known at the time of writing.15

Lawyers know the principle of copy-paste well, re-using
contracts that have been written for one client for a different
client at a later point in time. In a similar fashion, any digital
contract, before it is deployed, really defines an entire class of
possible look-alike contracts.

When a digital contract is deployed, made concrete, the
real names and blockchain addresses are provided.

RECITALS

The Payer pays an Amount into escrow, appoints the
Payee, appoints the Agent, and also fixes the Fee.

The Recital16 of a digital contract is code that is performed
once at the very beginning, before any clause can be executed.

15 Also, Lexon is still in flux and lines like these will look different soon, more
like one is used from contract templates in textbooks or on the Internet.
16 In US law, the recital is the part of a contract that states the purpose of
the agreement. It is intended to help interpreting the agreement. In the

Digital Contracts

LEXON 16 0.3.5.9.3

This example is simplistic in that the payer sets it all up.

In a traditionally written contract, recitals list the actions
taken that led the parties to enter into the agreement. Lexon
recitals are similar in that they provide the prerequisite founda-
tion for the clauses that follow. They are performed when the
smart contract is signed by the creator and deployed to the
blockchain.

CLAUSES

CLAUSE: Pay Out.
The Agent may pay from escrow the Fee to themselves,
and afterwards pay the remainder of the escrow to the
Payee.

CLAUSE: Pay Back.
The Agent may pay from escrow the Fee to themselves,
and afterwards return the remainder of the escrow to the
Payer.

The last part here are the clauses that define possible out-
comes. Payment is exclusively conditional on action of the
Agent here and can only go to the Payee or back to the Payer.

European Union, a recital is the part of a law that describes its motivation,
ideally free from jargon and politics.

Digital Contracts

BEST BEFORE APRIL 2020 17 LEXON

Online Editor and Deployment

Lexon can be tested live, and code can be deployed to a block-
chain, directly to Ethereum or Aeternity, at:

http://demo.lexon.tech

The online editor has more documented examples.

Fig 3 – Online Editor

This is the fastest way to deploy an actual smart contract to a
blockchain because it covers all the way from writing Lexon to
getting it live and using it: the online editor automatically exe-
cutes the necessary steps that come after the Lexon compiler
did its job.

One can also use the Lexon compiler stand-alone. In this
case you would take care of the rest, e.g. to compile and de-
ploy Solidity (pg. 177). The compiler can also be built into any
web page (see

Digital Contracts

LEXON 18 0.3.5.9.3

Solidity Output

The listing in Fig 4 shows how smart contracts had to be written
before Lexon.

No judge would look at this,17 and proposing such code
as contract would trigger a costly battle of experts in court.

Note that the language shown, Solidity, is deemed an
easy language by programmers but errors made using this lan-
guage have derailed startups and sunk upward of USD
100,000,000 in funds.18 The looks of the language, and its rela-
tive accessibility have been taken from JavaScript, the lan-
guage of choice for programming webpages. The rational was
that a familiar-looking language would help the adoption of
Ethereum. But a pixel hiccup in your webpage is a different
story than a glitch in your banking system and traditionally, dif-
ferent languages had been used for programming financial ser-
vices. Because the blockchain world had created billions in
funds the losses went mostly unnoticed outside the bubble. Of
course, in the real world, errors like this destroy companies, ruin
carriers and put people in the dock. It would seem that lack of
readability, even for programmers, might constitute a barrier
to adoption for blockchain technology.

Technically, Lexon creates this Solidity code (Fig 4) from
the human-readable code above (Fig 1), to satisfy the form that
Ethereum needs. The Solidity code is then compiled again, to
the (yet less readable) bits and bytes that are actually stored on
the Ethereum blockchain. But this is of no concern to a user of
Lexon.

17 Listening to a panel of judges commenting on blockchain at Stetson was
a key moment to motivate Lexon. They stated convincingly, and not without
humor, how they would never, ever look at smart contract code. They would
avoid it by every procedural means available, they said, and as last resort
call in IT experts to give their opinion but would not touch it themselves.
Stetson University College of Law has been ranked #1 in trial advocacy.
18 https://blog.comae.io/the-280m-ethereums-bug-f28e5de43513

Digital Contracts

BEST BEFORE APRIL 2020 19 LEXON

pragma solidity ^0.5.0;

contract Escrow {

 address payable payer;

 address payable payee;
 address payable agent;

 uint fee;

 constructor(address payable _payee,

 address payable _agent, uint _fee)

 public {
 payer=msg.sender;

 payee=_payee;

 agent=_agent
 fee=_fee;

 }

 function PayOut() public {

 require(msg.sender == agent);

 arbiter.transfer(fee);
 payee.transfer(address(this).balance);

 }

 function PayBack() public {

 require(msg.sender == agent);

 arbiter.transfer(fee);
 payer.transfer(address(this).balance);

 }
 }

Fig 4 – Escrow Example: Solidity Output

Digital Contracts

LEXON 20 0.3.5.9.3

Taxonomy

If we call a program running on a blockchain a ‘smart contract’,
and the contract as lawyers know it ‘legally enforceable con-
tract’ then we have three cardinal relationships that should be
differentiated:19

Digitally enhanced: a legally enforceable contract is in part au-
tomated by a smart contract. The legally enforceable contract
‘includes’ the smart contract and conventional prose spells out
parts that are outside the scope of the smart contract.

Digitally expressed: the smart contract is the legally enforcea-
ble contract. The code of the smart contract is the entire text
of the legally enforceable contract. This becomes possible
through the use of the Lexon language.

Digitally produced: a smart contract running on the blockchain
initiates a multitude of legally enforceable contracts, one with
each person interacting with the smart contract, which we will
call a Contract Factory. This is a common pattern that holds
e.g. for a crowdfunding smart contract.

19 This graphic & pg. 20 - 22 are in the public domain. H. Diedrich, C. Reyes.

Digital Contracts

BEST BEFORE APRIL 2020 21 LEXON

In short:

digitally enhanced ⟶ the program is a part of a contract.

digitally expressed ⟶ program and contract are the same.

digitally produced ⟶ the program produces contracts.

There are nuances and overlaps but it is important to note that
smart contracts and legally enforceable contracts are neither
necessarily the same nor necessarily two different documents.

Digital Enhancement

The typical ‘Ricardian Contract’20 setup joins traditional con-
tract prose with a blockchain smart contract, e.g. written in
Ethereum’s Solidity and thus not readable for non-program-
mers. In this way, human-readable prose is joined with a block-
chain component that will automatically perform part of the
agreement. An example could be a loan with collateral where
the exact conditions of the contract are laid out in the tradi-
tional contract’s prose, while the payments due for repayment
are calculated by a smart contract and automatically deducted
from the lender’s Ether21 account. The off-chain prose might
deal with exceptions e.g. the case that the lender stops access
to his account. This constellation then is what we call digital
enhancement. Lexon code can be used for these situations,
too. And in fact, we predict that it will replace Solidity for most
such cases because it will have strong upsides to do so.

Digitally Expressed

But the novelty with Lexon is that the legal contract prose can
now itself be the program that is executed on the blockchain.

20 Ian Grigg, 1996 – https://en.wikipedia.org/wiki/Ricardian_contract
21 Ether is the name of the crypto currency of the Ethereum blockchain.

Digital Contracts

LEXON 22 0.3.5.9.3

Program and contract can virtually be the same as can be ob-
served in the example on pg. 3 where a simple escrow agree-
ment is articulated in Lexon, with the document serving the
dual purpose of expressing the ‘meeting of the minds’ on the
one hand but being a program on the other, ready for deploy-
ment to the blockchain as is. We call this digitally expressed,
because there is now only one document that serves as legally
enforceable contract that one would show to a judge if needed,
and doubles as program on the blockchain.

Digitally Produced & Contract Factory

Very often, however, Lexon code will be used to program a
system that offers multiple individuals to enter into contracts,
which are each created ad hoc, e.g. at the time a prospect signs
off on a purchase, or a membership in a DAO. In this case, one
smart contract results into multiple legal agreements. A useful
example for this pattern is a ticket vending machine: such a ma-
chine can extend an offer to potential buyers of a ticket, e.g.
for public transport. When a buyer puts money into the ma-
chine it will ‘decide’ whether to issue the ticket or not. The
money has to be enough, the machine needs to check some
other conditions, e.g. whether it still has enough paper to print
on. Likewise, a smart contract always has the ‘last word’
whether it will initiate an agreement based on the user input,
or not. It can send money back that was sent to it if a condition
is not met as needed. The money might be too little, or the
deadline or a ceiling for a crowdfunding drive might have been
passed. If all is good, the smart contract will accept the offer of
the user and a legal agreement commences, usually between
the user and the creator of the smart contract. The result is a
set of many individual cookie cutter contracts e.g. between
many buyers and one seller. We want to call smart contracts
that act like this Contract Factories – borrowing from a well-
known pattern name in computer sciences – and the individual
legally enforceable contracts digitally produced.

Digital Contracts

BEST BEFORE APRIL 2020 23 LEXON

Human-Readability

“I am surprised new languages have not made
more progress in simplifying programming.”

Bill Gates22

The example from pg. 3 displays three distinct aspects of hu-
man-readability:

❶ the vocabulary,

❷ the grammar and

❸ the document structure.

In all three categories, there are similarities but also marked
differences between legally enforceable contracts and smart
contracts – i.e. between prose documents for human consump-
tion and programs. It is this gap that Lexon bridges, in all three
aspects.

On this premise rests the claim that Lexon constitutes a
new generation 23 of programming languages: all prior

22 https://www.reddit.com/r/IAmA/comments/18bhme/im_bill_gates_co-
chair_of_the_bill_melinda_gates/c8dcvve/
23 Program language generations are loosely defined by how highly they
abstract, and how close they get to human thought, making each next gen-
eration easier to use, and capable to write more powerful programs in less
lines of code. The 1st generation is pure machine code, consisting exclusively
of numbers. The 2nd generation assigns abbreviations or even entire words
to these numbers (pg. 148). The 3rd generation introduces structure, in the
form of loops, if-else-branches, lists and arrays. The 4th generation allows to
describe the desired result, somewhat closer to business language, rather
than the way there. SQL (pg. 152) is an example. This also includes visual
programming tools. The 5th generation arrives at pure mathematical logic
striving to leave any notion of program flow behind but consisting instead
of rules without any inherent order, like a math formula. This generation was
expected to produce AI and programs that would write themselves. Prolog
(pg. 78) is an important example.

Digital Contracts

LEXON 24 0.3.5.9.3

programming languages have yielded to the demands of the
machine on their deepest level and to this end all invented
something new – new vocabulary, new grammar, new docu-
ment structures – to start out closer to what a machine can un-
derstand. Lexon defies conventions in not doing that. Its design
is based on limitation instead.

Lexon Inverses the
Language Design Approach
Lexon starts from the rather complex and irregular realities of
natural language vocabulary and grammar. It reduces from
there towards a manageable rule set, instead of building a new
one from scratch. But Lexon has been created using the same
tools that are used to implement today's mainstream program-
ming languages.

The reason this works is that the models underlying these
tools come from linguistics and were originally designed to rea-
son about natural languages. But in the tradition of logicians,
the craft of programming language design accepted the prem-
ise that inventing new and presumably more powerful symbols
was its very core. At the same time, the productivity of the field
has also slowed down significantly, which made Bill Gates won-
der out loud why there is virtually no progress.24

Decades ago, limits of hardware performance made the
design trajectory away from natural language necessary and
justified it. But this is no longer the case. Arguably, forcing the
mind of the programmer to follow the requirements of the
computer as prerequisite in the process of coding, could today

24 There is progress, Rust is amazing. But Gates always cared about accessi-
bility and purposefully realized global computer literacy with Office macros.

Digital Contracts

BEST BEFORE APRIL 2020 25 LEXON

be questioned as an example of the mortal sin of programming:
premature optimization.25

One could argue the provocative view that Lexon ad-
dresses a severe flaw of basically all existing programming lan-
guages used in mainstream, professional software develop-
ment.

And in fact, Lexon code turns out to be exceptionally easy
to debug. Because finding errors does become easier for any-
one when Wernicke’s area can be used for it – the part of the
brain that we use to parse language in conversation. Anything
that doesn't sound right is probably a bug.26 This is really dif-
ferent. Human-readability might be for programmers, too.

25 "Premature optimization is the root of all evil," programmers like to say.
It is in fact essential to know when and what to optimize to end up on
budget and with maintainable code. The natural inclination of programmers
is to optimize as much and as early as possible.
26 As a programmer, you have to see it to believe it. There is a notable speed
up when double checking even compared to languages you know very well.

Digital Contracts

LEXON 26 0.3.5.9.3

Natural Language
Programming

Numerous projects (pg. 153) have in the past proposed pro-
gram code that reads like human language. But almost univer-
sally, they stayed with a 3rd or 4th language generation perspec-
tive, i.e. focused on the description of algorithms and data. The
more radical ideas didn’t get far. The mainstream languages
COBOL (1959) and SQL (1974) borrowed from English with in-
tent but remain at a formulaic level and use natural language
more as a learning aid and window dressing for the very ma-
chine-friendly and mathematical semantics underneath.27

The idea to make programs easier to understand by using
natural language dates back to the beginning of commercial
programming, to Grace Hopper’s FLOW-MATIC28 (1955). The
arguments she made 29 were identical to the argument for
Lexon, except that she and her colleagues were content to use
English to better express low-level flow charts – including self-
modifying operations. The modest goal then was to overcome
the scourge of having to calculate in non-decimal numbers.

But it was a big step forward and FLOW-MATIC’s heir,
COBOL, took a cue. COBOL is often cited as a cautionary tale
to not even think about bringing more of natural language into
a programming language. Of course, nobody actually knows
COBOL and it's funny because COBOL is a computer language
still in mainstream use after an unbelievable 60 years. This
doesn't necessarily make for a convincing negative example,
much to the contrary, as 60 years in IT is an eternity.

On the other hand, there are program languages

27 For code examples see pgs. 301 and 303 respectively.
28 For a code example see pg. 299.
29 https://archive.computerhistory.org/resources/text/Reming-
ton_Rand/Univac.Flowmatic.1957.102646140.pdf

Digital Contracts

BEST BEFORE APRIL 2020 27 LEXON

specifically made to describe legal contracts, among them the
one in Nick Szabo’s ’94 paper in which he coined the term
smart contracts.30 His proposal illustrates that the ambition to
create a language for contracts does not have to go hand in
hand with the intent to make the language inviting for non-pro-
grammers.

There are many claims today about ‘human-readability’
for various smart contract languages, but invariably they pro-
pose a completely different, more abstract idea than Lexon of
what ‘human-readable’ should mean. They all very much look
exactly like program languages, often more like the less main-
stream ones, like Lisp or Prolog. In those cases, ‘human-reada-
bility’ may sometimes serve as a pro-active defense against the
complaint that they look unfamiliar (e.g. Lisp-like) even for
many programmers.

At least since 2016, everyone in the blockchain scene felt
that it would be a great idea to have smart contracts that would
be readable like normal, plain English contracts. But no-one
succeeded to implement a natural language grammar.

30 Ibid.

 29

THE
LANGUAGE

Lexon code is optimized for reading,31 Because programs, as
well as contracts, are usually more often read than written, and
usually are read by more people than there are writers.

It's an open question right now, how difficult writing
Lexon might be, although there are very encouraging examples
being created by the community.32

What follows is the explanation of the basics of the lan-
guage that have helped others to get started. We'll first give
an impression of how the vocabulary works, then look at how
Lexon code is structured, i.e. its 'grammar.'33

The full language reference – the vocabulary of Lexon – is
available online at http://lexon.tech/reference and in the
Lexon Bible.34

31 At the right insistence of Brian J. Fox, creator of bash – a program virtually
every programmer has used – and one of the earliest GNU hackers.
32 The most astonishing contribution, the UCC financing form by Carla
Reyes, is presented from pg. 61.
33 You'll benefit from making sure to get the most up-to-date information
but the gist of it as described here will remain the same.
34 https://www.amazon.com/dp/1656262665

 31

Vocabulary

Lexon’s base vocabulary at this point is roughly 130 words and
word combinations. This is comparable to other mainstream
programming languages. The core vocabulary of natural Eng-
lish is estimated to be 850 words (pg. 169).

Off the bat Lexon’s expressiveness is much lower than
what can be said using 850 words in natural language, mainly
because it has a very limited number of verbs.

But Lexon's base vocabulary can be amended by any
number of freely definable names, nouns usually, that are used
to designate subjects, objects and clauses (!). In the above ex-
amples, “Payer”, “Payee”, “Agent” but also “Fee” are such
names, as well as “Pay Out” and “Pay Back.”

Names can consist of multiple words, i.e. include spaces.
Clauses are often named for partial sentences, e.g. "Service
Performed as Agreed," so that they can organically be built
into other sentences.35 This is a major pillar on which Lexon's
readability rests. Within those names, no restrictions apply. The
effective vocabulary across Lexon contracts is therefore of un-
limited size.

To get an idea, here are the words and low-level sentence
structures that Lexon recognizes.36 The words listed can be
used as part of names. Case does not matter. Some words, e.g.
articles, are recognized in order to be ignored:

35 J
36 As Lexon is in early development, this is a shifting target. The list is based
on the source of Lexon 0.2.

The Language

LEXON 32 0.3.5.9.3

a, aborted, after, afterwards, also, amount, amount of,
and, and also, and with this, any, anyone, appoint, at
all times provided, at any time, at least, be, be made,
before or on, being, being on record, binary, burn,
calculate, certify, clause, collect, comment, consider,
contracts, count of, current, current time, data, date,
day, decrease, decreased by, deem, define,
difference, divided by, dividing, duration, enter,
escrow, fifth, fix, for all, fourth, further in the future
than, given, greater or equal to, greater than, half,
having been, if … then: … else:, in, in any case,
increase, increased by, invoke, is, lesser or equal to,
lesser than, lex, lexon, make a payment, may, minus,
must, never, no, no-one, not, not the case, notify, now,
number of, number of days, offer, on, or, paid,
passed, past, pay .. to, person, plus, power of,
previous, prior, product of … and, provided, publish,
record, recorded value, redefine, remainder,
resulting, return, reveal, revoke, seconds, section,
send a notification, subtract from, sum of, tenth,
terminate, terminate all contracts, terms, text, the,
themselves, then, there is, thereby, third, this, this
contract, time, time passed since, times, to, token
type, Transfer, undefined, whole number, with, yes

Fig 5 – Lexon Base Vocabulary (verbs and compound expressions)

A complete list and detailed explanations are found online at
https://www.lexon.tech/reference and in the Lexon Bible.

The Language

BEST BEFORE APRIL 2020 33 LEXON

Names
Changing the definition names does not change the logic of
the contract.

LEX Payment.

"Payer" is a person.
"Payee" is a person.
"Payment" is an amount.

The Payer pays a Payment to the Payee.

This is a payment, nothing more. The Payer pays an amount to
the Payee. This is not even 'really' a contract, because it is so
simple.

LEX Transfer.

"Sender" is a person.
"Receiver" is a person.
"Sum" is an amount.

The Sender pays a Sum to the Receiver.

This is the same contract as above, just spelled out using dif-
ferent names. When this contract is signed and deployed to a
blockchain, the persons named will have to be named with their
real names or at least a blockchain address, to clearly identify
them.

That comes later though. At the time of writing, this doc-
ument is a template and the names defined in it are placehold-
ers. Are that is known is that they must be a person or an
amount.

The Language

LEXON 34 0.3.5.9.3

Synonyms
If you use a synonym verb, it does not change the logic of
the contract.

LEX Transfer.

"Sender" is a person.
"Receiver" is a person.
"Sum" is an amount.

The Sender transfers a Sum to the Receiver.

This is the same contract as the previous one, just spelled out
using a different verb with the same meaning: transfer instead
of pay.

Note that the verbs in Lexon are predefined and few. You
cannot just invent them as with the names (nouns). I.e. the
names 'Sender', 'Receiver', and 'Sum' can be replaced by al-
most any other words you can come up with. But for 'pay' the
synonyms are precisely 'transfer' and 'return.' No other words
will work.

This is a fundamental difference between nouns and
verbs in Lexon. Nouns can be chosen freely, verbs need to be
used as intended, looked up in examples or the reference to
see what will work.

The Language

BEST BEFORE APRIL 2020 35 LEXON

Neutral Names

LEX Transfer.

"A" is a person.
"B" is a person.
"C" is an amount.

A transfers C to B.

This is the same contract as the previous one, just reducing the
definitions to neutral one-letter names.

Articles
Articles (a, an, the) can be left out.

LEX Payment.

"Payer" is person.
"Payee" is person.
"Payment" is amount.

Payer pays Payment to Payee.

Articles and some other words in Lexon are called 'fillers'. They
have a big role in making a text easy to read for a human being
but are irrelevant to the automation of the contract on the
blockchain. Obviously, articles can fundamentally change the
meaning of a contract to the human reader. It's on the writer
to not abuse them. Reining in the possibilities for abuse of fill
words is a high priority for future Lexon tools (cf. pg. 40).

The Language

LEXON 36 0.3.5.9.3

Sentence Grammar

Lexon's basic sentence grammar follows that of English, requir-
ing, in this order: subject, verb, object. Verb and object are
grouped together as predicate.

In the boxes below, square brackets [] mean 'optional'
and the ellipsis … means 'potentially more of the same'.

Sentence ⟶ Subject + Predicate [, Predicate …]

Predicate ⟶ Verb + [Object]

Fig 6 – Lexon Sentence Rule

These sentences are the main carrier of information in Lexon
code. They form the body of RECITALS and CLAUSES.

The choice of verbs in Lexon is very restricted, while sub-
ject and object can each be any blockchain addresses – or legal
person for that matter. Within a Lexon contract they will be
given an arbitrary name alluding to its function (e.g. Payer),
which adds meaning for the reader.

The freedom to name variables any way you want is a trait
Lexon shares with all modern programming languages. Lexon
goes further towards readability by not requiring any artificial
style, like Camel Case or Snake Case.37 It also allows spaces as
part of the names, which enhances readability markedly.

Lexon also knows a number of passive constructs that op-
erate on any given subject, e.g.: something is certified.

37 Originally as convention, the style of writing variable names: e.g. as
firstName (Camel Case) or first_name (Snake Case). The intent is to leave
out spaces. Lexon allows to write: First Name.

The Language

BEST BEFORE APRIL 2020 37 LEXON

Document Structure

Technically, the Lexon document structure is part of its 'gram-
mar', because that's how computer languages are defined. This
concerns everything beyond those parts that are corollaries of
natural language grammar. There is no such thing as a docu-
ment structure in natural language, but there is in both con-
tracting and programming.

On the highest level, the Lexon code can be embedded
into legal contract prose. Within the Lexon parts then, the basic
structure is:

Head + Definitions + Recitals + Clauses

Fig 7 – Lexon Simple Document Rule

The above rule can also be expressed visually as follows:

Fig 8 – Lexon Simple Document Rule (graphical)

A minimal contract can be very short and only needs to have
the HEAD and one sentence of RECITAL – or instead of a re-
cital at least one CLAUSE.

However, as spelled out below, more complex Contract
Factories (pg. 20) will see the pattern of head, definitions, re-
cital, clauses repeated multiple times over: first within a section
called TERMS, then within one or more CONTRACTS sections.

The Language

LEXON 38 0.3.5.9.3

The TERMS define all aspects that are true for the entire
digital contract code. The CONTRACTS describe individual
agreements between only two parties. If more than one type
of such agreement is part of the system, there will be as many
CONTRACTS sections.

Lexon ⟶ Head + Terms + Contracts

Terms ⟶ Head + Definitions + Recitals + Clauses

Contract ⟶ Head + Definitions + Recitals + Clauses

Fig 9 – Lexon Complete Document Rules

The above rule can be visualized as follows:

Fig 10 – Lexon Complete Document Rules (graphical)

Most elements given above are optional. Many digital con-
tracts will be simple. This structure is anything but random
though and carries the more complex ones.

The Language

BEST BEFORE APRIL 2020 39 LEXON

Within the individual CLAUSES, the pattern is:38

Clause ⟶ Head + Definitions + Permissions +
 Conditions + Statements.

Fig 11 – Lexon Clause Rule

The above rule can also be expressed visually as follows:

Fig 12 – Lexon Clause Rule (graphical)

Beyond these rules, some terms in the Lexon vocabulary are
irregular and have to be learned for each individual term in the
vocabulary. They are not used in surprising ways, but cannot be
described by a pattern and sometimes cannot be used in all
ways that natural English would allow for.

38 This is due to change in the next version of Lexon.

The Language

LEXON 40 0.3.5.9.3

The Double Edge of Language

A caveat: there is nothing in the language itself that keeps the
writer from using misleading definitions. Language is not the
right level to prevent fraud. Content checks are always one
level above language.

LEX Payment.

"Payee" is person.
"Payer" is person.
"Payment" is amount.

Payee pays Payment to Payer.

The non-sensical swap of Payer and Payee in this example will
confuse readers but the automation of the contract will still
work the same as in the examples before. The logical meaning
of this code is identical to the one shown before. It is just the
labels that are misleading. But it is misleading only to humans
since the blockchain virtual machine does not understand the
word 'Payer' or 'Payee' at any rate. It does not even get to see
them. It just understands what the action 'pay' is.

Lexon is not the promise – at all – that smart contracts
cannot be misleading. Lexon is the promise that smart con-
tracts can be readable. And this example is only a mild instance
from a wide spectrum of possible criminal abuse. Unfortu-
nately, there are more powerful ways to make Lexon contracts
be as corrupt as bad contracts in other blockchain languages:
cleverly misleading definitions, convoluted text, intentional off-
by-ones. But ultimately, there is no way for a technical tool to
understand if even a completely correct contract proposes a
completely fraudulent deal.

The Language

BEST BEFORE APRIL 2020 41 LEXON

Allowing for readability is Lexon's first goal. Curbing op-
portunity for abuse through smart tools will be a continuous
task. But note that it is only thanks to the high readability of
Lexon that this question comes up in the first place. It would
simply not be asked of other blockchain languages.

A judge may throw this contract out because it is going
to be difficult to argue that switching the words Payer and
Payee was intentional and served a purpose that both sides
agreed upon. The contract will still execute 'correctly' on the
blockchain, which is the reason why a future version of Lexon
will have an option for a judge or arbiter who has been given
forum powers to reverse a smart contract with minimal over-
head and no consequences for other users of the blockchain
that the contract runs on.

L

You get the basic idea at this point and might consider to check
out online resources and cherry pick across the rest of the
book. The online editor at http://demo.lexon.tech is a great
place to get your own first digital contract deployed you will
soon be able to actually use it for work. An online tutorial is
available, with up to date examples to deepen your learning at
https://www.lexon.tech/tutorial.

Next up we'll be looking at real-world code examples,
then follow thoughts about how we got here (pg. 61), we get
philosophical about the meaning of 'meaning' (pg. 108), and
go through the domains where Lexon can help (pg. 121).

 43

EXAMPLES
The following examples show what Lexon will be able to do and
how digital contracts will look in practice. In February 2020 they
are work in progress.

First, a preview of how US law might look written in
Lexon. This is an actual proposal to the relevant reform com-
mittee of the Universal Commercial Code (UCC).

The 'lexonification' of a standard service agreement fol-
lows, crafted for the Civil Law jurisdiction of Switzerland
(pg. 49).

A pure blockchain play is next, listing the Lexon code for
the popular Moloch DAO, a project less concerned about legal
fine print (pg. 51).

Note how the examples in this section are digital con-
tracts that attain full identity of program and legal prose. They
are digitally expressed rather than merely digitally enhanced
(cf. pg. 20). The Moloch example is Contract Factory as it digi-
tally produces multiple individual legal agreements.

 45

UCC Financing Statement

The example below39 is part of a proposal to reform the notice
filing system included in Article 9 of the U.S. Uniform Commer-
cial Code (UCC). Specifically, the example is of a smart con-
tract-based UCC-1 form – a financing statement that secured
lenders use to notify other prospective lenders that a loan has
been made that takes specific assets as collateral.40 The main
function of the UCC-1 financing statement is not in the crypto-
currency aspect. Rather, the key aspect is foremost about rec-
ord keeping.

This code allows to keep track of the status of the UCC
Financing Statement and related collateral in a way that is more
powerful than the current implementation in US law. It is ex-
pected to better serve the notice function of the Article 9 filing
system.

This example represents the Implementation or perfor-
mance of law, with the understanding that the states' filing of-
fices can implement law directly on the blockchain.

This code has definitions, a lot of clauses and no recitals.
It is structurally simpler than the escrow contract we looked at
before.

39 This discussion of the UCC Financing Statement example is drawn from
Carla L. Reyes, Creating a Crypto-Legal Structure: The UCC Financing State-
ment (2019) (unpublished manuscript). For further discussion of the under-
lying concepts, see Carla L. Reyes, Conceptualizing Cryptolaw, 96 NEB. L.
REV. 384 (2017).
40 UCC § 9-502. CONTENTS OF FINANCING STATEMENT –
https://www.law.cornell.edu/ucc/9/9-502

Examples

LEXON 46 0.3.5.9.3

LEX: UCC Financing Statement

"Filer" means [a person], with phone number of [phone
number] and email of [email].
"Debtor" means [a person's name], known as [Public Key],
located at [mailing address, city, state, postal code,
country].
"Secured Party" means [a legal person's name], known as
[Public Key], located at [mailing address, city, state, postal
code, country].
"The Filing Office" means [the name of the state filing
office], known as [one public key belonging to the Filing
Office].
"Collateral" means [UCC category of collateral], identified
by the following number: [hash]
"Digital Asset Collateral" means [an amount].
"Financing Statement Date" means the filing date.

CLAUSE: Lapse Date.
Lapse Date means five years after the Financing Statement
Date or five years after the Continuation Statement Date,
whichever is later.

CLAUSE: Continuation Window.
Continuation Window means from six month before the
Lapse Date to the Lapse Date.

CLAUSE: Reminder Fee.
The Secured Party may pay a Reminder Fee into escrow.

CLAUSE: Notification.
The Filing Office may, at the first day of the Continuation
Window, send a Notification Statement to the Secured
Party and then pay the Reminder Fee to themselves.

CLAUSE: Notification Statement.
Notification Statement means the text "Your Continuation
Statement for [the id of this UCC Financing Statement] is
due on or before the [Lapse Date]."

Examples

BEST BEFORE APRIL 2020 47 LEXON

CLAUSE: Continuation Statement.
The Secured Party may during the Continuation Window,
certify the Continuation Statement Date to be the current
date.

CLAUSE: Termination Statement.
The Secured Party may terminate this UCC Financing
Statement.

CLAUSE: Clear.
The Filing Office may terminate this UCC Financing
Statement one year after the Lapse Date.

CLAUSE: Pay Escrow In.
The Debtor pays Digital Asset Collateral into escrow.

CLAUSE: Default.
The Secured Party may declare Default.

CLAUSE: Give Possession.
The Filing Office may, upon Default, pay the escrow to the
Secured Party.

CLAUSE: Amend Collateral.
The Secured Party may change the Collateral.

CLAUSE: Amend Debtor.
The Secured Party may change the Debtor.

The Filer will usually be a bank employee or outside counsel for
the bank, the Debtor is the person taking out a loan, the Se-
cured Party is the bank. The Collateral is the real-world object
the debtor is putting up as security. It can also be cryptocur-
rency and similar, i.e. Digital Asset Collateral.

The Reminder Fee is a fee that the bank can pay to the
filing office, but is not required to pay. If the bank pays it, the
filing office may send a Notification to remind the bank to put

Examples

LEXON 48 0.3.5.9.3

in a Continuation Statement every 5 years – i.e. during the Con-
tinuation Window. Else, the statement will lapse. Note that
while many features of this example merely effect existing rules
related to the UCC filing system, this feature of the example
represents a new proposal.

That there is no obligation described here is in keeping
with blockchain powers. A blockchain smart contract cannot
coerce anyone to do anything. It can only incentivize.

If the debtor Defaults, all that is needed is that the bank
says so. This is the intended way the law works, not a weakness
introduced by blockchainification. It is clearly an oracle-mo-
ment,41 and a weird one because the bank as Secured Party can
simply say that the money should now be theirs. This power,
however, comes from the underlying contract provisions that
are part of the secured loan documentation. The idea of ensur-
ing that the Filing Office retains a role in relation to Digital As-
set Collateral, in that without its action to Give Possession the
collateral is not actually going to go to the bank is an attempt
to address the unique Issues around custody and priority in the
context of Digital Asset Collateral. If the Collateral is a real-
world item and not Digital Asset Collateral, the regular rules
related to self-help repossession apply. By law though, the mo-
ment the bank says so, they collateral is theirs. If the bank
cheats, it's fraud.

Notably, a further feature of this smart contract is that it
records exactly who said what when: including that the bank
claimed that there was a default as precondition to seizing the
assets. This trail of information is what matters.

Proposing law to be written in Lexon is pretty rad. But the
next example was equally unexpected in its modest ways.

41 Oracles, in blockchain-speak, are the gates through which facts from the
outside world are made known within the confines of the digital blockchain
data world.

Examples

BEST BEFORE APRIL 2020 49 LEXON

Service Agreement with Escrow

Lexon can be used to bring normal, legal contracts on-chain.
This can be surprisingly useful and elegant. A broad portion of
such a contract's text can turn out to be ‘more than just prose’
and go on the blockchain.

In the example below,42 Lexon will ignore only the text in
italics as 'boilerplate,' i.e. as prose that may be necessary for
legal purposes or clarity but not for automation. Lexon can tell
the boilerplate apart on its own.

The italics are not required to write Lexon code but used
here for illustration.

LEX: Service Agreement with Escrow. 

PREAMBLE:
A simple service agreement under Swiss law with built-in
escrow.

CLAUSE: Offer.
The “Service Provider” pays half of the “Assessment Fee”
into escrow, sets the amount of the “Service Fee”, sets the
“Delivery Time”, and also appoints the “Assessor”.
By executing all of the above, the Service Provider creates
a binding offer.

CLAUSE: Acceptance.
A “Client” pays the Service Fee into escrow, and also pays
half of the Assessment Fee into escrow.

The “Due Date” is defined as the duration of Delivery Time
after the current time at that point in time.
By executing all of the above, the Client accepts the offer.

42 Courtesy Benedikt Schuppli.

Examples

LEXON 50 0.3.5.9.3

CLAUSE: Provision of Services.
The Assessor may certify either that the “Provision of
Services Have Met the Defined Service Criteria” or not,
and also certify the “Time of Provision of Services”.

CLAUSE: Pay Out.
The Service Provider may, if Time of Provision of Services
is certified to be before or on the Due Date, and the
Provision of Services Have Met the Defined Service
Criteria then pay the Service Fee from escrow to
themselves, and also pay the Assessment Fee from escrow
to the Assessor.

CLAUSE: Pay Back. 
The Client may if the Due Date is past and it is not the case
that the Provision of Services Have Met the Defined
Service Criteria, then pay the Service Fee from escrow to
themselves, and also pay the Assessment Fee from escrow
to the Assessor.

GENERAL TERMS:
I. The Service Provider will provide to the Client the
Services on or before the Due Date.
II. The Service Provider will provide the Services with the
applicable standard of care.
III. Both the Service Provider and the Client will carry their
respective tax and applicable levies.

Examples

BEST BEFORE APRIL 2020 51 LEXON

The Moloch DAO

This is an implementation of the Moloch DAO,43 a minimalist
DAO contract, very well known in blockchain-circles that allows
members to fund, vote and elect new members in the style of
a cooperative. Members can also quit and pull their funds out.

There is no boilerplate in this example. All of the code
goes on the blockchain. The example has all four sections de-
scribed above: head, definitions, recitals, clauses. It also has
CONTRACT sections44 that are described further down. Essen-
tially such a section defines a 1:1 relationship between the DAO
and a given member. Each CONTRACT section exhibits the
same structure as the document at large: i.e. head, definitions,
recitals, clauses.

LEX MOLOCH.

TERMS:

“Summoner” is [a person].
“Period Duration” is defined as a duration of a fifth of a
day.
“Voting Phase Duration” is defined as a duration of 7 days.
“Grace Phase Duration” is defined as a duration of 7 days.
“Abort Window Duration” is defined as a duration of
1 day.
“Proposal Deposit” is [an amount].
“Dilution Bound” is defined as 3.
“Processing Reward” is [an amount].
“Summoning Time” is [a time].
“Approved Token” is [a token].
“Summoner’s Initial Number Of Shares” is defined as 1.
“Total Shares” is [an amount].
“Total Shares Request” is [an amount].

43 Solidity source code and explanation at https://github.com/Moloch-
Ventures/moloch
44 The CONTRACT syntax is under revision and will be documented shortly.

Examples

LEXON 52 0.3.5.9.3

The Summoner sets:
the “Approved Token” to any token type;
the “Period Duration” to a duration of time in seconds,
greater than 0;
the “Voting Phase Duration” to a duration of time in
seconds, greater than 0;
the “Grace Phase Duration” to a duration of time in
seconds, greater or equal to 0;
the “Abort Window Duration” to a duration of time in
seconds, greater than 0 and lesser or equal to the Voting
Phase Duration;
the “Processing Reward” to any amount that is at least 0;
the “Proposal Deposit”, an amount that must be greater or
equal to the Processing Reward;
the “Dilution Bound”, an amount that must be greater
than 0.

The “Summoning Time“ be defined as the Current Time.

The “Voting Phase Periods” is defined as the whole
number resulting from dividing the Voting Phase Duration
by the Period Duration.

The “Grace Phase Periods” is defined as the whole
number resulting from dividing the Grace Phase Duration
by the Period Duration.

The “Abort Window Periods” is defined as the whole
number resulting from dividing the Abort Window
Duration by the Period Duration.

The Summoner enters into a Member Contract with
Summoner’s Initial Number Of Shares.

Then, the number of Total Shares is set to the number of
the Summoner’s Initial Number Of Shares.

Examples

BEST BEFORE APRIL 2020 53 LEXON

CLAUSE: Current Period Number.
The “Current Period Number” is defined as the whole
number resulting from calculating the time passed since
Summoning Time, divided by the Period Duration.

CONTRACTS per Member:

“Member” is a person.
“Owned Shares” is an amount.
“Proposal Number of Latest Yes Vote” is a number.

The Member is appointed.
The number of Owned Shares is set.

CLAUSE: Eligibility To Ragequit.
Eligibility To Ragequit is defined as Having Never Voted
Yes
or the Proposal of the Latest Yes Vote having been
Processed.

CLAUSE: Having Never Voted Yes.
“Having Never Voted Yes” is defined as no Latest Yes Vote
being on record.

CLAUSE: Rage Quit.
A Member may, if the Member has Eligibility To Ragequit
then:
Burn the number of Shares To Be Burned,
and afterwards pay the Rage Compensation for the Shares
To Be Burned to themselves.

CLAUSE: Rage Compensation.
The “Rage Compensation” is defined as the amount in
escrow times the Burned Shares divided by the sum of the
Total Shares and the Burned Shares.

CLAUSE: Burn.
Owned Shares are decreased by the Given Amount.
Total Shares are decreased by the Given Amount.

Examples

LEXON 54 0.3.5.9.3

CONTRACTS per Proposals:

The “Proposer” is a person.
The “Applicant” is a person.
The “Shares Requested” is an amount.
The “Starting Period Number” is a number.
“Yes Votes” is a number.
“No Votes” is a number.
“Processed” is binary.
“Can Pass” is binary.
“Passed” is binary.
“Aborted” is binary.
The “Token Tribute” is an amount.
“Details” is a text.
The “Maximum Total Shares At Yes Vote” is a number.
The “Proposal” is this contract.

CLAUSE: Submit Proposal.
An Applicant may offer a Token Tribute in Approved
Tokens,
set the Shares Requested,
set the Details,
and by this Create a Proposal with the Shares Requested.

CLAUSE: Create a Proposal.
The record of the Total Shares Requested be increased by
the Shares Requested.

The Proposal Deposit in Approved Tokens be collected
from the Proposer to the escrow.
The Token Tribute in Approved Tokens be collected from
the Applicant to the escrow.

The “Last Blocked Period Number” be defined as the
greater of the Current Period and the Starting Period of
the Last Proposal.

Examples

BEST BEFORE APRIL 2020 55 LEXON

The “Starting Period Number” be defined as the Last
Blocked Period Number increased by 1.

The “Last Voting Phase Period Number” be defined as the
sum of the Starting Period Number and the Voting Phase
Duration In Periods minus 1.

The “Last Abort Period Number” be defined as the sum of
the Starting Period Number and the Abort Window
Periods minus 1.

The “Proposer” is defined as the Member.
The “Applicant” is set.
The “Shares Requested” is set.
The “Token Tribute” is set.
The “Details” are set.

The “Maximum Total Shares” At Yes Vote be recorded
as 0.

CLAUSE: Voting Phase Expired.
“Voting Phase Expired” is defined as the Current Period
Number being greater than the Last Voting Phase Period
Number.

CLAUSE: Abort Window Has Not Passed.
“Abort Window Has Not Passed” be defined as Current
Period Number being lesser or equal than Last Abort
Period Number.

CLAUSE: Submit Vote.
A Member may certify a Vote.
The Vote must be “yes” or “no”.
If the Vote is “yes” then:
Increase the count of Yes Votes by the number of the
Shares of the Member,
and also record the Last Vote of the Member,
and also Track Maximum of Total Yes Votes.

Examples

LEXON 56 0.3.5.9.3

Else: increase the count of No Votes by the number of the
Shares of the Member.

CLAUSE: Track Maximum of Total Yes Votes.
If the count of Total Shares is greater than the recorded
value of Maximum Total Shares At Yes Vote then the
recorded value of Maximum Total Shares At Yes Vote be
changed at that point to the count of Total Shares.

CLAUSE: Evaluate Proposal.
The Proposal is considered Processed.
Decrease the record of Total Shares Requested by Shares
Requested.

If the amount of Yes Votes is greater than the amount of
No Votes then the Proposal Can Pass.

If the Dilution Bond is Exceeded then the Proposal Can
Not Pass.

If the Proposal Can Pass and the Proposal has not been
Aborted then: Pass Proposal;

else: transfer the Token Tribute in Approved Tokens from
escrow to Applicant;
Pay the Processing Reward in Approved Token from
Escrow to the Executor;
Pay the Proposal Deposit less the Processing Reward in
Approved Tokens to the Proposer.

CLAUSE: Dilution Bond is Exceeded.
“Dilution Bond is Exceeded” is defined as the amount of
Total Shares times the Dilution Bond being smaller than
Max Total Shares At Yes Vote.

CLAUSE: Pass Proposal.
The Proposal is deemed Passed.
If the Applicant is not a Member then, Enlist Applicant as
Member.

Examples

BEST BEFORE APRIL 2020 57 LEXON

Increase record of Total Shares by the number of Shares
Requested.
Transfer the Token Tribute in Approved Tokens from
escrow to Guild Bank.

CLAUSE: Abort.
The Applicant may, if the Abort Window Has Not Passed
then Pull Out.

CLAUSE: Pull Out.
The amount of Tokens To Abort be defined as the amount
of the Token Tribute,
afterwards, Token Tribute be changed to 0,
and with this, the Proposal is Aborted,
afterwards, Transfer the Tokens To Abort to the Applicant.

CLAUSE: Member Proposal Vote.
Reveal Vote Of Member.

The logic of the original Moloch DAO, as proposed by its cre-
ators using Solidity, is somewhat obscured by technicalities like
the voting periods and the way that adding members and vot-
ing on proposals are rolled into one.

A couple of notes for astute readers:

Abort Window Has Not Passed is an expression that is
defined by being the name of a clause:

CLAUSE: Abort Window Has Not Passed.
“Abort Window Has Not Passed” be defined as Current
Period Number being lesser or equal than Last Abort
Period Number.

… and is then used as part of a sentence, just like a definition
in a legal contract would. A programmer, of course, would call
this, a function.

Examples

LEXON 58 0.3.5.9.3

The Applicant may, if the Abort Window Has Not Passed
then Pull Out.

The Same reason is behind the various upper-case spellings
throughout the document, e.g.:

If the Dilution Bond is Exceeded, then the Proposal Can
Not Pass.

The amount of Tokens To Abort be defined as the amount
of the Token Tribute.

… all these occasions are (multi-word) definitions, i.e. names of
CLAUSES, and as such need to be included into the prose ex-
actly as defined as CLAUSE name.

And it is the reason for the wooden wording of:

The Applicant may, if the Abort Window Has Not Passed
then Pull Out.

… as "Abort Window Has Not Passed" is a fix phrase
that is chosen freely and as pragmatically as possible but, in the
end, needs to work as both the name of a CLAUSE and as part
of a sentence.

By the same token*, it is not allowable to insert "by" be-
tween Aborted and then to make this sentence prettier:

If the Proposal Can Pass and the Proposal has not been
Aborted then: Pass Proposal;

Examples

BEST BEFORE APRIL 2020 59 LEXON

Because the then is a part of the if construct that this sentence
is. While Lexon has a liberal regimen regarding articles and
some other fill words, this is not a place nor a word (i.e. by) that
is allowable, and this place cannot be made to read better in
this way.

The recital of CONTRACTS per Members …

The Member is appointed.
The number of Owned Shares is set.

… operates without active subject. The active party is going to
be whoever deploys the smart contract to the blockchain, i.e.
signs off on the entire LEX document and puts it into operation.
This is not fixed at the time this template code is written. The
person will be named the Summoner when the deployment
happens.

 61

COMPUTATIONAL
LAW

"While the idea of mechanized legal analysis is
not new, its prospects are better than ever due to
recent technological developments … Legal tech-
nology based on Computational Law has the poten-
tial to dramatically change the legal profession, im-
proving the quality and efficiency of legal services
and possibly disrupting the way law firms do busi-
ness. More broadly, the technology has the potential
to bring legal understanding and legal tools to eve-
ryone in society."

Michael Genesereth45

Lexon may deliver the Holy Grail to Computational Law, provid-
ing a way to automate analysis. Computational Law is the study
of the 'mechanization' of legal reasoning. It attracts controversy
because it calls for rigidity in the specification of laws.

'Mechanized' natural language grammar seems to be the
conduit for automating contracts and to achieve 'mechanized'
legal analysis. This may conclude a quest of 350 years, which
has variously been attacked as too optimistic or suspected to
be held back by conspiracy.

That Lexon digital contracts can also reliably self-perform
goes beyond the original 1940ies vision of Computational Law.

45 Computational Law; at CodeX: The Center for Legal Informatics, Stan-
ford University – http://complaw.stanford.edu/readings/complaw.html

Computational Law

LEXON 62 0.3.5.9.3

The self-propelled and incorruptible nature of blockchains had
not been envisioned. It also goes beyond the early dreams
mankind had about computers and robots. Accordingly, thanks
to 'trustless' technology, Computational Law looks poised to
take on an even more prominent role, reaching beyond simpli-
fication to something of a new quality: a reality where it does
make sense to talk about facts, true and false, because the
blockchain circumscribes a horizon in which signatures – as ex-
pression of will – and money – as carrier of value – exist in an
undeniable way. For this to be possible, logic had to come
around to embrace induction. Blockchains in this light are to
computing what quantum theory signified for physics: the em-
brace of probability instead of facts.

But Lexon's contribution is on the logical side and the
promise of 'mechanized' legal analysis is spectacular enough.
From the start, analysis was a major part of the quantum leap
that computers seemed to hold for the legal domain. The other
being digital search: the revolution in discovery that started in
the 1970ies. And it may help to imagine how fantastic elec-
tronic search must have looked a hundred years ago, to open
one's mind to the enormity of change that electronic analysis
may bring. It took longer than expected. For it to happen, law
had to be re-united with logic.

This may be possible now because 2000 years on, logic
has finally caught up with the real-world necessities of the legal
profession.

Law currently does not hold itself as a science of logic.
Because contrary to intuition, logic as we know it today is not
an automatic faculty from birth. It has seen a lot of progress
over the last centuries, with the legal profession having material
and early influence on it, as well as on the development of pro-
gramming.

For some this may not make the claim that contracts
could or should be written like programs more palatable. In a
way the proof is in the pudding, e.g. pg. 49. But it's a legit

Computational Law

BEST BEFORE APRIL 2020 63 LEXON

plausibility check to ask why things should be possible now that
ostensibly weren't before. The answer does not lie in the ad-
vent of raw computing power, smart text blocks or digital doc-
ument management. Amazing as they are, they did not make
the difference. The answer may instead lie in how the young
practice of programming has evolved logic to the degree that
it can now be applied to law. Logic might have had to go
through the cambric explosion manifest in the millions of pro-
fessional programmers and billions of lines of code that have
sprung into existence over the last decades, before the cross
pollination could start. It may only now be powerful enough.

Law and Logic

"The relation between law and logic has been
governed, as many of the most intense relationships
are, by both a strong attraction and persistent strife."46

C. Roversi

While it was a professor of law who first dreamed up a universal
formal language and kicked off computer sciences (pg. 76), law
seems to have in the meantime developed an allergy against
logic. On fair grounds, one could say, as logic was so far behind
for so long, in hock of philosophers who were less interested in
practical application. But the degree to which law has divorced
formal logic may be going a bit far.

There is a lot of benefit to be had from healing this rift.
Lexon is obviously an invitation to do that. If in the past it made
sense to leave logic behind as it could not bring itself to be-
come consistent and pragmatic, with the advent of higher-or-
der logic and programming that can no longer be said.

46 C.Roversi, 2005: Law and Logic –
https://link.springer.com/chapter/10.1007/1-4020-3505-5_53

Computational Law

LEXON 64 0.3.5.9.3

Like legal cases, programs are very real. Like law, they are
rooted in a deductive premise of truth and provability and still
have to operate in a world where hard facts are often impossi-
ble to come by. Where constant awareness is demanded of the
limits of the model of the world that is the subject of a case –
or program. Both jurists and programmers have to deliver re-
sults and have developed accepted techniques – best-practices
at heart – for how to operate under adverse conditions.
Namely, with incomplete knowledge.

The intuition might be that it was too abstract a challenge
for the legal profession to come up with a math-like, deeply
nestable grammar for law, an artificial vernacular with the rea-
soning powers of a programming language. The inclination to
reach straight for Deontic logic (the arithmetic of shall and must
not) instead of Boolean (true and false) would not have
helped47 (pg. 80). But in reality, it was simply timing: first and
higher-order logic, on which programming is based, only ar-
rived now, the result of a major push of mathematicians to clean
house a hundred years ago. They did not exist in Antiquity
when the foundations of law were laid. It would be an anachro-
nism to fault law for not being based on higher-order logic, or
to blame members of the legal profession for being skeptical
about it.

Types of Ambiguity

Some of the perceived distance between programming and
law is a misunderstanding: programming is 'messier' as it may

47 Boolean logic allows arithmetic of the type ¬	A ⋀	¬	B = ¬ (A ⋁ B) – read
not A and not B is the same as, not: A or B. Deontic logic has a problem with
this, because roughly put, it is ambiguous what the negation of an obliga-
tion is: not obliged, or obliged not to. This reflects a real problem of real
contracts. Lexon mostly stays with Boolean truth values as this is the logic
that smart contracts know. The word 'may' has a central role though.

Computational Law

BEST BEFORE APRIL 2020 65 LEXON

seem, because programs, like laws, live in the real world. And
in so far, the concern that a naïve, overly rigid take is proposed
is not justified. Programmers are pragmatists, too, and the craft
of programming has evolved accordingly.

While many legal practitioners have learned that exacti-
tude is not wanted for law, lawyers versed in blockchain smart
contracts appreciate that the term smart contract was invented
precisely to describe a vision (and a language) 48 to arrive at less
ambiguous contracts, without denying that not all outcomes
can be addressed up front. Obviously, machines like it crisp. To
achieve automation some clarity would be indispensable. But
the proposal to reduce ambiguity was never about leaving no
questions open. Especially smart contracts leave things TBD all
the time, calling lose ends 'oracles.'49 Smart contract languages
have a second mechanism that they share with virtually all main-
stream programming languages, which is called 'exceptions.'
These are structural facilities built into the deepest layers,
which are qualitatively special and exist specifically to allow for
the handling of the unforeseen. They acknowledge explicitly
that programs and smart contracts serve a world that is not
completely predicable and, at least subjectively, non-determin-
istic.

To some extent, the special sound of ‘legalese’ is the pro-
fession's organic attempt to create a distinct language for law,
where certain phrases enjoy unambiguous meaning. That these
phrases sound antiquated helps to distinguish the intended
meaning from the literal meaning that could be a plausible al-
ternative reading in a given context. This exists, because it is
helpful. A program-like language doesn't make that worse it
will just sound different. It may allow to be more precise about

48 http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/
Literature/LOTwinterschool2006/szabo.best.vwh.net/contractlan-
guage.html
49 Oracles are so central for blockchains that one of the major selling points
of Aeternity is that it has a better oracle integration.

Computational Law

LEXON 66 0.3.5.9.3

what is left open. But it does not require to define every possi-
bly outcome up front.

To the extent that ambiguity is understood as wriggle
room for someone to say "you know what, this doesn't make
sense" – or, "you know what, 50 bucks and I'll look the other
way" – the cold mechanical nature of blockchains is their very
contribution. To end this. They will make exchange possible
that now can't flourish because people could not be asked to
be so heartless – or unselfish – to uphold the required rules
while the margins don't have room to pay a policing mecha-
nism.

It would not be the first time that strictness actually em-
powers human quality to shine as a result, benefitting from and
protected by a reliable foundation. Exceptions and oracles will
be used to safeguard against unintended cases of hardship.

As a net effect this might create massive new demand for
lawyers as people might contract in situations that today are
not seen as important enough to do so, because taking such
contracts to court could never be cost-effective. But with smart
contracts making enforcement obsolete, because they just
can't be broken, the focus shifts from litigation to contract writ-
ing. The cost is more predictable, smaller and up front and the
upside goes to lawyers instead of attorneys.

This will further be aided by the way that Lexon can help
reducing complexity to a degree that might be hard to imag-
ine: Modularization is a term from computers sciences that de-
scribes how chunks of functionality are compartmentalized into
subsections that can be created, understood and tested inde-
pendently. And that can then be used as building blocks for
larger systems. A module is typically of the size that is not too
complex to be understood as a whole, in the sense that it is
small enough that its logics fits into a human brain all at once.
That all its implications and possible exceptions can be sur-
veyed mentally and no surprising emergent behavior should es-
cape the coders. A system composed from such modules

Computational Law

BEST BEFORE APRIL 2020 67 LEXON

would then likewise become easier to understand because the
well-defined net functionality of each module is all that needs
to be kept present, its finer details are 'encapsulated' and hid-
den away, on purpose.

Lawyers do this now when crafting complex contract sys-
tems that consist of many sub contracts. But they have not ar-
rived at the degree of automation that programmers had to
achieve to govern the millions of lines of code and much higher
fragility of programs where an error often meant that the entire
program will stop. Because different from contracts, computer
code is performed down to the last line, again and again, while
it is in force. E.g. a computer game that heats up your proces-
sor really uses all that processing power for hours on-end to
execute billions of instructions a second and if only some of
them were wrong, you would see the pixel errors immediately
on your screen. An 8-core 3 GHz processor that busies its vents
really processes close to a hundred trillion commands an hour.
The commands are of a very low machine level but they result
from the higher-level code that the programmers wrote, they
reflect any error the programmers might have made and there
is so much to do because every last detail of the smallest mod-
ule is evaluated again and again, every time with slightly differ-
ent parameters. With programs, nothing happens if they are
not read by a CPU incessantly, never missing a beat.

This is obviously the polar opposite of how rarely details
of legal prose are looked at – usually only after something else
went wrong and it all went to court, i.e. only as an exception –
and it created a different culture and required a different set of
tools for creation, handling and testing. With contracts becom-
ing programs those tools can now be borrowed from IT to es-
tablish the correctness of modularized contracts. This will in-
crease productivity and quality and organically nudge towards
less ambiguity as more details can be spelled out and kept in
sync across a larger contract at much lower cost.

In the long run, because Lexon will allow way higher com-
plexity of rules while at the same time making them more

Computational Law

LEXON 68 0.3.5.9.3

transparent and their application guaranteed fair, it may help
to integrate disenfranchised parts of society under the um-
brella of one unified jurisdiction. This is worth noting because
the call to preserve ambiguity can be code for a wish to leave
open the space that is required for informal but very real rules
to exist.

Contracts constitute private law, and to the extent that
sections of a society, rich as well as poor, regard the law as
geared against them and maybe even as their true social re-
sponsibility to subvert it, Lexon does not require a change of
heart to get started. It will not be used to increase the reach of
the law of the official jurisdiction first but can be employed to
express informal parallel rules that have emerged with no en-
forcement through the legal system available. A blockchain's
capacity to obsolete courts will effectively reduce frictions with
the legal system that can arise from illegal enforcement. While
in the very long run an entire legal system might migrate to a
language like Lexon and in the process in fact get harder to
ignore, on the way, a common ground of fairness, predictability
and universal access to justice may be discovered, based on the
improvements blockchains can bring and that allows where
possible to integrate into the official jurisdiction the chosen
rules of parts of society that before could not because the com-
plexity this would have entailed would have been unmanagea-
ble. Where values clash, this road will be longer. But where the
reality today is that cost of access to justice cuts parts of society
out, and a reaction to this is reality, Lexon is the cure of the
cause, and at the same time a possible path to establish a roof
that has room for both the established official and unofficial
rule sets to be joined to a consistent whole.

Computational Law

BEST BEFORE APRIL 2020 69 LEXON

The Limits of Deduction

Aristotle's syllogisms that shaped Western thought, are all
about finding eternal truth by way of deduction. That's what
συλλογισμός means and its nature is to apply the universal to
the specific. This is congruent to a top-down approach like the
project Legalese50 that would attempt to codify the Constitu-
tion and hope to, once done, get more specific from there.

Lexon, however, had as a rigid guiding principle to keep
the focus on the low-level, actually working blockchain smart
contracts first, and maybe work its way up, leaving undeter-
mined the maximal elevation this approach could yield. 51
Which is inductive in spirit, going from the particular to the uni-
versal, precisely the perspective that modernity amended Aris-
toteles' logic with since the 19th century. Our natural sciences
all rest on the pragmatic assumption that an experiment will
yield the same result when repeated faithfully, even though
that is strictly speaking not proving anything.52 This is our defi-
nition of what is scientific. This is not an attempt to deny climate
change but can we be clear that this is not deductive and there-
fore, will not yield 'truth.' It yields scientific predictions: useful
but not strictly speaking 'knowledge.' This is relevant because
logic got stuck on the puristic but impractical side for millennia,
which lead to the legal profession divorcing it in anger.

Programming, like practicing law, is 'by nature' deduc-
tive: arguing in eternal hard truths.53 But programs that interact

50 Wong Meng Weng is the man. His treasure trove – https://legalese.com
51 The founders of Legalese and Lexon hope to meet in the middle.
52 A turkey may form opinions about the perfectly dependable law of nature
that makes food appear every morning until it doesn't. This is why scientists
talk about models that help to predict what will happen even though they
might not explain anything, and cannot be expected to be fully reliable.
53 "Perhaps 90 percent of legal issues can be resolved by deduction" –
Aldisert, Clowney, Peterson, 2007: How to Think Like a Lawyer –
http://ssrn.com/abstract=966597

Computational Law

LEXON 70 0.3.5.9.3

with human beings in a dialog are of course acting on an in-
complete dataset until the last input is done. This is like a con-
tract over the course of its lifetime: the final result is for a while
not clear. Both are in a certain 'state' at any given time, that
changes when something relevant happens. Eventually, both
programs and contracts might terminate and divulge a result.
But they can wait for the next input for an extended amount of
time. Many programs are not in the world to deliver one result
in the end but to provide an on-going service. There are a hun-
dred programs that are currently waiting for your next input on
your phone, laptop, TV, car or watch. Often these programs
have no concrete end-point but continue until shut off (or not).

This is different from how programs and computers
where first imagined. But the stop-and-go is an essential ele-
ment of how both contracts and smart contracts on the block-
chain function. This is far removed from a deductive end-run,
starting from a perfect and true dataset to the one and only
valid result. Because their information is incomplete at all times,
many programs are constantly creating and discarding again
models about the world around them, make predictions on a
best effort-basis, labor diligently to flush decayed data out of
their system, and generalize from the limited subset of facts
they know to conclude what their environment at large – in
'truth' – might actually look like. This is inductive reasoning, the
way our brains actually work when we don't do math. Well,
even when we do math.

Law being a practical business, embracing the messiness
of life, lies and faulty memory – logical induction, based on ev-
idence and likeliness instead of elusive 'facts' looks like an ex-
cellent fit. Inductive reasoning is unappealing in so far as it al-
lows only to talk about probabilities, never of truth. But what it
has going for it is, that it works, the whole of today's science is
proof for that. And what forever disqualifies deductive logic is
that the closed-world universe that it would work in does not
actually exist. Both programming and law have gone through
this revelation.

Computational Law

BEST BEFORE APRIL 2020 71 LEXON

The Evolution of Logic

"In any state whatsoever, a judicial matter is
better treated, the less is left to the decision of the
judge (Plato, Laws, Book ix; Aristotle, Rhetoric, Book i;
Menochius, De Arbitrariis Judicum, Book i)"54

Gottfried Leibniz, 1666

A Ph.D. of law, Leibniz, is regarded as the 'first computer sci-
entist,' a contemporary of the 17th century no less. He pro-
posed a Glass Bead Game in De Arte Combinatoria in 1666,
which has been called the theoretical ancestor of modern com-
puters.55 The first example he gives for its application, is a legal
question: the automation of the determination who a contract
favors, enumerating the combinations that could result from
Gaius, Digest XVII, 17.1.2:56

The obligation of mandate is contracted between us
whether I entrust you
only with my business,
or whether I charge you only with that of another party,
or with his along with mine,
or with my business and yours
or with yours and that of another.
Where I direct you to attend to a matter which
concerns you alone, the mandate is superfluous, and
no obligation whatever arises from it.

Fig 13 – The first ever program proposal

54 De Arte Combinatoria, transl. by Loemker – https://www.math.ucla.edu/
~pak/hidden/papers/Quotes/Leibniz-Arte-Combinatoria.pdf
55 https://www.britannica.com/topic/De-Arte-Combinatoria
56 translated by S. P. Scott. – https://www.constitution.org/sps/sps04.htm.
The original: http://www.thelatinlibrary.com/justinian/digest17.shtml

Computational Law

LEXON 72 0.3.5.9.3

This is where programming started.57 Leibniz also immediately
remarked upon a bug: 'mine, yours and that of another' is miss-
ing as 7th case. What Leibniz was hoping for, was a way to au-
tomate the decision in a concrete case, according to this law.

In the same text he also proposes that this art would help
forming cases, likening the legal craft to geometry:

"The elements are simples; in geometry figures,
a triangle, a circle etc.; in jurisprudence an action, a
promise, a sale etc. Cases are combinations of these,
which are infinitely variable in either field."58

This reflects Leibniz' view that everything should be expressible
as a com2nation59 of basic concepts.

To be clear, this is the paper that is called the beginning
of computer sciences. It was written by a Ph.D. of law and the
first proposal for a program ever written was to program an
ancient law. The intuition then that programming and law have
a similar nature predates the advent of computers. In fact, law
was one of the major inspirations to start thinking about pro-
grams at all. In that sense, if we succeed to join programming
and law it will really be programming coming full circle, finally
arriving what it had first been imagined for. If we find that it is
a surprisingly powerful fit, it may actually not be surprising at
all, because programming was conceived this way in the first
place: to work for law. It was just forgotten on the way.

Leibniz did not only do law and the Ars Combinatoria also
includes examples for philosophy and mathematics. He was a
polymath and turned his attention to whatever suited. But his
official post was that of Privy Counselor of Justice, one of his
two formal educations was in law and he was a practicing

57 This is not a program; it is the idea for a program. The first program was
written by Charles Babbage in 1836, or Ada Lovelace, in 1842. For her
'Notes,' see: http://www.fourmilab.ch/babbage/sketch.html#NoteG
58 Arte, Ibid.
59 That's really how he spelled it. He was the first script kiddie, too.

Computational Law

BEST BEFORE APRIL 2020 73 LEXON

lawmaker, involved in a sizeable law reform. His work is not just
a footnote to computer sciences but regarded as foundational
contribution. In a dream-like sequence he all but predicted the
punch card, which was central to the separation of program and
machine – in a vision of marbles falling through holes.60

Throughout his life, Leibniz thought and wrote about a
universal formal language he called characteristica universalis
that would allow for unambiguous reasoning – N.B. not just
number crunching. 61 He also built some of the earliest mechan-
ical calculators.62 But he understood the difference between
language and formula,63 possibly even between program and
hardware.64 He knew that he needed a language first to be able

60 "This calculus could be implemented by a machine (without wheels), in the
following manner, easily to be sure and without effort. A container shall be
provided with holes in such a way that they can be opened and closed. They
are to be open at those places that correspond to a 1 and remain closed at
those that correspond to a 0. Through the opened gates small cubes or mar-
bles are to fall into tracks, through the others nothing. It is to be shifted from
column to column as required." – Leibniz 1679, De Progressione Dyadica.
published in E. Hochstetter, H.-J. Greve, eds., 1995: Herrn von Leibniz’
Rechnung mit Null und Einz; translated by V. Huber-Dyson; quoted after:
https://www.edge.org/discourse/schirrmacher_eurotech.html.
George Dyson comments: "In the shift registers at the heart of all electronic
computers, from mainframes to microprocessors, voltage gradients and
pulses of electrons have taken the place of gravity and marbles, but other-
wise things are still running exactly as Leibniz envisioned."
61 "It is true that in the past I planned a new way of calculating suitable for
matters which have nothing in common with mathematics, and if this kind of
logic were put into practice, every reasoning, even probabilistic ones, would
be like that of the mathematician: if need be, the lesser minds which had
application and good will could, if not accompany the greatest minds, then
at least follow them. For one could always say: let us calculate, and judge
correctly through this, as much as the data and reason can provide us with
the means for it. But […] it seems that mankind is still not mature enough to
lay claim to the advantages which this method could provide." – Leibniz,
1706. Letter to Electress Sophia.
62 The principle of the Leibniz Wheel being in use until the 1970ies –
https://en.wikipedia.org/wiki/Leibniz_wheel
63 He invented the notation for calculus that is still in use today.
64 Experts can't fully agree if the calculus ratiocinator he proposed was soft-
ware or hardware.

Computational Law

LEXON 74 0.3.5.9.3

to write the formulas that could make a machine reason about
more than numbers.

Leibniz' fascination with Chinese culture led him to be-
lieve that atoms of meaning should be expressible in individual
symbols. Descartes had proposed that such a universal lan-
guage should be based on a very limited number of primitives.
Leibniz established the notion that a separate layer of meaning
existed behind language that could be used to automate rea-
soning if a better way to express it could be found. This leads
directly to one of the main controversies of 20th century linguis-
tics (pg. 172).

The mathematician Frege later referred to Leibniz' vision
in his work on a "formula language, modeled on pure thought"
(Begriffsschrift, 1879), which was a foundation of first-order
logic, the first major step beyond Aristotle. Frege's idiosyn-
cratic, two-dimensional notation65 was in turn used by Zuse to
create the first higher programming language, Plankalkül, in
1942. This makes for only two hops and one mathematician be-
tween the vision of the lawmaker and an electrical engineer for
the invention of higher programming languages. 66 But it took
250 years.

Frege's notation for logical reasoning replaced subject
and predicate by argument and function. A concept that Loglan
(pg. 172) implements – with limited success – for a human lan-
guage that should enable clearer thought. Lexon dials this back
for all cases when natural grammar is dealt with. But technically
keeps part of Frege's formalism in how it bundles bits of mean-
ing into clauses. In this way Lexon's syntax differentiates be-
tween, on the one hand, a-priori patterns (of the language it-
self) that Lexon re-aligns with natural language grammar as
found in syllogisms – versus, on the other hand, the subject
matter of a text (the intention of a contract, listed in clauses)

65 Types annotated in a separate row.
66 The analogous US/British pantheon might be Newton, Peirce, Backus.

Computational Law

BEST BEFORE APRIL 2020 75 LEXON

that in Lexon is modeled on how functions work in modern pro-
gram languages. In a way Lexon comes back to law after the
science of logic has matured to a self-assured stage, ready to
dress up as natural language again, a form it had shed 140
years ago to find clarity first. But the concept of a 'function' had
meanwhile evolved during its time in practical programming
and plays a different, essential role now in extending the 'vo-
cabulary' of a document. Lexon thus uses the old style (speech)
for the basics that all contracts share, the new style (clauses) to
add logic specific to the contract. Which is very much how both
contracts and programs are crafted. Lexon just unifies the
looks.

The symbolic logic one learns in school today may appear
as timeless as Euclide's geometry but is in fact very young. It
originates from Boole's The Mathematical Analysis of Logic, the
first rigidly structured approach to logic, developed as recently
as 1847. Its current looks were contributed by Paeno in 1888.
The symbol ⋀ for 'and' is only from 1930: right before program-
ming became a thing. It is this logic that Lexon proposes over
Deontic logic, a basis that virtually all programming languages
share (pg. 80).

Logic has only recently – in 1931 – become self-aware and
come to understand its own hard limits, literally by Gödel prov-
ing logically that no logical system can prove itself. It sounds
like an ordinary hen-egg insight but the point is that the hen
got it and it was a big shock that impacted the mathematical
community. It brought one of their dearest projects to a shut-
tering halt, right before the dawn of computing in the 1940ies.
To prove his point, Gödel had to reach outside of mathematics
in a way, to reason about it from the outside. Mathematically.
He invented a kind of meta-math, assigning numbers to formu-
las and proofs, to represent them in his proof. In the formula to
prove things about formulas and proofs. At this point, math be-
came programming: while finding a way to express a self-re-
flecting insight about math, in math. This power of abstraction,

Computational Law

LEXON 76 0.3.5.9.3

the capability to reach beyond itself, is what programming
started with.

The point here is that for Computational Law to happen,
not only had the hardware been missing the last millennia but
crucially the math. This is relevant because Computational Law
is not dead set on being computed by a computer. The focus
is on the method, which could on a smaller scale be executed
by human assistants. Which in theory means the Romans could
have done it, or anyone else in the 2,000 years since. Except
they could not because programming had yet to be invented.

The Reality of Programming

When programming finally arrived, it was at first in the form of
extremely primitive command lists that would be fed a mechan-
ical central processing unit to execute hardwired sub tasks like
addition or subtraction. These lists were necessarily technical
step-by-step instructions rather than logical formulas.

A program could be the instruction to 'load' a certain
number – say, 3 – into a 'register' – a special place in the ma-
chine, maybe called A-register –, then another number – say, 5
– into another register – B – and finally execute the 'add' com-
mand. Register A would then hold the result, 8. 'Load into A'
may have been assigned the command number 1 (binary
00001), 'load into B', 2, 'add A and B', number 3. The code
might thus have been 1 3, 2 5, 3:

00001 00011
00010 00101
00011

Fig 14 – Binary program code example

Years later, imperative code like this would say the same thing:

Computational Law

BEST BEFORE APRIL 2020 77 LEXON

A = 3
B = 5
A = A + B

Fig 15 – Structured program code example

Backus, the inventor of BNF (pg. 110), criticized that the re-
definition of A (in the example in line 3) was breaking the alge-
braic mold. Programming as it emerged, shaped by the primi-
tive machines that were the first computers, somehow was get-
ting the notion of variables wrong. Command lists like this were
not really math. In math, A, once defined, cannot suddenly be-
come something else. The usefulness of a mathematical for-
mula entirely rests on this. That programming had turned out
like this was because of the limited number or staging grounds,
the registers, that a central processing unit could handle. Vari-
ables were re-used as a matter of prudence. It took many dec-
ades for programming languages to come around to how math
does it; the mainstream languages of today still haven't.

And already in 1936 Turing had proven that not every
program was going to be computable, not even if the dataset
and the algorithm were fully known. His proof was based on
Gödel's and included – only then – the first mathematical defi-
nition of a computer program. His find was as disappointing as
Gödel's. The 'Halting Problem' is one reason for why Ethereum
needs to count gas every step of the way: it cannot be deter-
mined a-priori how many steps certain programs will need to
make, or if they will ever finish at all. In Ethereum, there is a
check every step, if the gas has run out, not least to prevent
unpredictable dead loops67 that would crash the entire chain.
This is very pricy though and many normal programs don't have

67 A dead loop is a program error where a loop can never be exited. For
example, the code a = 1; while (a > 0) do a = a + 1; is practically a dead
loop. Turing essentially proved that one cannot prove that a program has
no such never-ending behavior.

Computational Law

LEXON 78 0.3.5.9.3

this check, which is the reason why computers 'crash,' or 'hang:'
they get lost in a dead loop with no way to recognize the prob-
lem and get out of it. They can ultimately not fully reflect their
own actions. Programs today are many magnitudes more com-
plex than what Turing reasoned about but the principle holds.

Nasty 'bugs' kept programmers busy from the start. A
program should run but it did not. Or, worse, it ran mostly but
sometimes not. What Turing had shown also meant that there
would be hard limits to how much computers themselves would
be able to help to get programs right. The actual work of pro-
grammers included probing, testing and puzzling. It was not
the exact science that could have been expected on the prem-
ise that programs are essentially formulas reasoning about per-
fectly logical deductions. The reality of programming had be-
come a step-by-step process in every way, intuitive as mathe-
matics always were, a craft where experience mattered, and a
sharp mind and painstaking diligence, but formal logic reason-
ing only rarely. Might sound familiar to jurists.

Only in 1972 did a language emerge – Prolog – that im-
plemented the discovery that the imperative (step-by-step) list-
ing of a program and its declarative, logical notation could be
expressed as one. This was at the end of a long flame war in
the AI community over whether it made any sense to represent
knowledge in imperative style at all, or if it had to be in a de-
clarative way – looking more like math and predicate logic – to
be of any help for AI. Prolog's syntax manages to do both at
the same time. It looks somewhat like a syllogism but doubles
as an instruction list that can be executed top-down:

grandmother(X, Y) :-
 mother(X, Z),
 mother(Z, Y).

Fig 16 – Prolog code example

Computational Law

BEST BEFORE APRIL 2020 79 LEXON

On the one hand this expresses the 'static' declaration that

X is the grandmother of Y, in case (i.a.) that
X is the mother of Z and Z is the mother of Y.

But it can also be 'executed' as a step-by-step instruction list:

To test whether X might be the grandmother of Y:
test if X is the mother of Z and Z the mother of Y.

This is the starting point for Lexon. Obviously, Prolog remained
with Frege's substitution of subject-and-predicate prose by a
function-and-argument notation. To say, Prolog does not read:

X is the grandmother of Y, if …

However, this is a matter of syntax rather than substance. Both
forms could result into the same AST (pg. 89).

Lexon is not just Prolog with some natural language sugar
coating. But the initial hypothesis was based on experimenta-
tion with a similarly basic building block. Instead of Prolog's lin-
gering between declarative and imperative notation, Lexon's
grammar spans both natural and computer language. The cen-
tral question in both cases was the same: how far can we go so
that a machine can still unambiguously read this.

Higher-Order Logic

Today's computer programs are higher-order logic. The step
that goes beyond first-order logic is that they can reason logi-
cally about themselves to some degree, for example about the
types of their variables (is x a number or a list of numbers?) or
treat their own code as data (x can be a function). Code creates
code for the most mundane tasks now: most big webpages
consist of code created by other code on the fly, optimized by

Computational Law

LEXON 80 0.3.5.9.3

yet other code, over multiple levels. What did not really happen
are programs that would write themselves, which is different.
The systems that automatically produce the code for webpages
are themselves laboriously coded by humans. The delineation
up to where humans work and from where computers take over
is often very clear because it is the front line where the debug-
ging happens. We did not yet manage to teach computers to
code.68

However, for Leibniz, where we got would be so utterly
mind-boggling!

The Boolean Truth
of Efficient Breach

Meanwhile in law, the theory of Efficient Breach appeared that
posits:

"Repudiation of obligations should be encour-
aged where the promisor is able to profit from his
default after placing his promisee in as good a posi-
tion as he would have occupied had performance
been rendered."69

In other words, if a party to a contract feels they would be bet-
ter off by breaking the contract, even after paying to make the
other party hole, then this should be welcomed as the best op-
tion for aggregate welfare of society, and not punished in
court. The proposal was made as an attempt to explain why

68 This looks like the great failure of the 5th generation of computer lan-
guages. They were supposed to disintermediate the programmers. There
were massive efforts in the 80ies to achieve this that faltered in the 90ies.
69 Robert Birmingham, 1970: "Breach of Contract, Damage Measures, and
Economic Efficiency"; 24 Rutgers L. Rev. 273.

Computational Law

BEST BEFORE APRIL 2020 81 LEXON

common law developed such that it did rarely force a party in
breach to perform as promised, and also usually not levied pun-
ishment on top of expectation damages, but mostly just or-
dered the promisor in breach to pay for the promisee's lost
profits. The theory only made official what had already become
the practice. But it does do away with all pretense that the De-
ontic terminology of a contract should be interpreted to carry
any moral meaning. Which it could because breaching the
promise of a contract had already stopped coming at stifling
reputational cost.

This makes the language of "shall" and "must" in con-
tracts out of date. If everything in a contract is optional, if at a
cost, this makes blockchain smart contracts and their Boolean
Logic of "true" and "false" the more appropriate framework to
articulate contracts in.

Because blockchains were developed with commercial
transactions in mind, it is fair to speculate that they might have
turned out differently if contracts still had a moral, i.e. reputa-
tional dimension. But as it stands, reputation systems have be-
come a much-debated staple of blockchain discussions but
they are not built into the deeper fabric.

One can argue that Efficient Breach only works for com-
modified product chains where it is sufficiently predictable
what the lost profit would have been. The power balance be-
tween the parties has to be roughly equal so one can't just out-
spend the other in court. The contract must be big enough that
going to court is a risk worth taking in the first place.70 This will
hit the small players,71 the innovative, unpredictable business.

70 Note that the brocard pacta sunt servanda as well as the principle of good
faith, which are foundational tenets of civil law as well as international law,
do not exist in common law jurisdictions.
71 "American markets, … are giving up on healthy competition. Sector after
economic sector is more concentrated than it was twenty years ago, domi-
nated by fewer and bigger players who lobby politicians aggressively to
protect and expand their profit margins. Across the country, this drives up

Computational Law

LEXON 82 0.3.5.9.3

It may maximize the economic outcome for society on average
and in the moment, at the detriment of the weaker party to a
contract, as well as of progress at large as commodification oc-
curs as a rule only after a domain matures. Maybe the argument
that the breach of a contract can be the moral thing to do, ar-
gued by a judge less, is a sign of the times.

Blockchain smart contracts however make the modern
take on what a contract is visible and allow to express it in a
straight forward way: the cost of breach is spelled out, in arbi-
trary detail and variation. The fees for it might be staked – i.e.
paid in up front so that the punishment can be executed auto-
matically. The non-breaching party then does not have to go to
court and both sides have clarity going in what exactly a breach
will cost and that it will be paid.

Importantly, when articulated in this way, a digital con-
tract is not even 'broken' when an Efficient Breach is elected. It
just leaves its 'happy path.'72 All of the procedure of handling
the 'breach' is part of the contract, it has become one of the
available options. It can be programmed so that at that point
everything is handed over to a human arbiter or court. Or it can
be fully automated, needing no outside intervention, triggered
by one of the parties, or a missed deadline. The automation is
a spectrum. While the natural way to write contracts for a block-
chain will be to make everything an option and thus spell out
all possible Efficient Breach conditions and include them into
the explicit contract – one can also implement the opposite,
using the court system as fallback.

But to the extent that options, including to breach, are
included in the text of a digital contract, the procedures de-
scribed for them cannot be broken. There is no breach of the

prices while driving down investment, productivity, growth, and wages, re-
sulting in more inequality." – T. Philippon, The Great Reversal, 2019
72 In programming, the happy path is the core intended functionality. It can
be a minuscule part of the whole, which adds error and other exception
handling and generally takes care of all alternate, if less frequent cases.

Computational Law

BEST BEFORE APRIL 2020 83 LEXON

breach procedures possible. If it is all automated and staked,
there is no way to refuse to pay for the lost profits or ignore a
deadline. The unbreakable nature of blockchain smart con-
tracts creates a powerful, fast and cost efficient, unstoppable
mechanism right below the layer where everything is optional.

Digital contracts thus protect the smaller players from the
risk and cost of litigation, especially in the case of Efficient
Breach. This should make market participation viable for a
broader spectrum of participants and safeguard innovation
against the power and deep pockets of incumbents.

Sufficient Probability as Facts

Lexon approached Computational Law with the same resolve
to accept incompleteness that fuels the aversion of many law-
yers against the call for a less ambiguous method for contract-
ing. Accepting the limits of the knowable is the right reason
why legal professionals make a point that their business cannot
be that of justice. The same reason instructs scientists to speak
only of predictions and confidence-levels, instead of truth.

But fascinatingly, moving away from hard facts is also at
the heart of how blockchains solved the seemingly intractable
problem of a copy protection for digital data. Which is the basis
for how blockchains can furnish digital cash without a central
bank: it had been 'known' that no two computers could reliably
agree on a fact and also know that they agree.73 This remains
true. What Bitcoin introduced with proof-of-work74 – for all its
flaws – was a switch from 'knowing facts' to make the best of
sufficient probability.

73 This is called The Two General's Problem –
 https://en.wikipedia.org/wiki/Two_Generals%27_Problem
74 Proof-of-work is the mechanism that Bitcoin uses to find a useable illusion
of consensus between the computers participating in its network.

Computational Law

LEXON 84 0.3.5.9.3

That all of our science is based on observation instead of
truth has led to heated discussions among philosophers about
the nature of inductive reasoning as recently as the mid
20th century.75 It is only prudent that the legal domain stayed
out of that crossfire. What is not disputed is that induction
works. The way that blockchains use it is dumbfounding for pro-
grammers because it essentially replaces facts with best-
guesses and overwhelming likeliness. It feels wrong and sloppy
at first – but it works. O deal in probabilities instead of truth,
sure reminds of quantum physics. And it really provided for a
quantum leap.

Through this shift, blockchain technology creates a
shared world view – an artificial truth shared across many com-
puters – that had been thought to be impossible.76 This shared
view – the consensus – is material for a blockchains to work and
enables many other applications beyond crypto currencies. But
because of how this consensus is achieved,77 'knowledge' of
each participant about 'the truth' is never absolute but only
very, very likely. Which for practical reasons is sufficient the
same way that we find it reasonable to assume that the sun will
come up tomorrow (by induction), although there is no way to
prove it (by deduction). Past observations are convincing
enough that world commerce rests on the assumption that
there is a tomorrow.

Jurists are completely right when they insist that it makes
no sense to talk in absolutes: the blockchain cannot, either. But

75 Wikipedia can't even decide whether a quote from Prof. Gillies should
stand that claims that rules of inductive reasoning exist in AI. –
https://en.wikipedia.org/w/index.php?title=Inductive_reason-
ing&oldid=934496424. Footnote 35 holds the claim but in apt self-similar-
ity is annotated as "failed verification" where it is used in the main text..
76 The Two General's Problem describes the impossibility to be certain that
an appointment is made and also confirmed as messengers might get lost.
77 There are different consensus mechanisms and some methods, like .e.g.
'proof-of-stake' have a firmer guarantee for the shared truth. They most of
the time have disadvantages, e.g. with less scale usually, being unable to
include thousands of computers as Bitcoin, Ethereum or Aeternity do.

Computational Law

BEST BEFORE APRIL 2020 85 LEXON

just like law and science, it has embraced probability as worka-
ble model and it is within this framework that the Boolean true
and false values of smart contracts exist. It is not real truth, it
can suffer catastrophic technical failure.78 But that is true of an-
ything on this planet. For most intents and purposes, it simply
works and in connection with money transfers it is qualitatively
a new reality – one where true and false are so reliably acces-
sible – infinitesimally less than 100% – that it does make sense
to allow reasoning based on such comfortable black-and-white
terms.

This should be complemented with the Efficient Breach,
the realistic view of contractual obligations as options that are
fulfilled precisely when it makes economic sense. It then be-
comes inevitable that contracts should more and more be ex-
pressed in true and false, instead of permissions, obligations
and prohibitions. The kind of ambiguity that this eliminates, will
not be missed. And because of the limitations of Deontic Logic,
the benefit is automated reasoning, in a transparent way: the
ability to perform 'mechanized' legal analysis.

Legal professionals should leave the instinctive reaction
to distrust absolutes behind and not reject calls for less ambi-
guity out of hand, the same way that programmers embraced
probability. We could meet in the middle, on new ground.

78 But Lexon was made to protect the technology against weaponized law
when the technology works right (pg. 117). Not to block remedy through
the court of law if the technology fails. Lexon really expresses intent. If the
automation fails, because the blockchain underneath does, the code will still
express what should have happened. And this case is altogether less likely
though than a frivolous suit attacking a smart contract claiming that it did
not perform as announced.

Computational Law

LEXON 86 0.3.5.9.3

Types

Does Lexon realize Leibniz' dream? Well, Leibniz would proba-
bly have been happy with FORTRAN.79 As a polymath he would
have been the lawyer who learned coding to be able to auto-
mate reasoning. No need of Lexon in that sense. The chore-
oriented way that he meant it, computers can do since long.
Lexon adds inclusion of everyone else, and the interface,
through natural language, to our legal system as it exists today.

And as a good riddle, Leibniz' quest might have been a
bit of a trick question. Leibniz' characteristica universalis are in-
terpreted as the idea of a universal language and the main
quest for it to be for its base vocabulary. The characteristics
were to be combined but always in the same, generic fashion.
Presumably, absolute concepts should have been found, like
what Llull hat proposed 400 years earlier: goodness, greatness,
eternity, power, wisdom, will, virtue, truth, and glory. But Leib-
niz did not commit, to the extent that Gödel, who collected all
about it, started to suspect that parts of Leibniz' writing about
the characteristica was missing and actively suppressed.

However, disappointingly prosaically, the 'universal char-
acteristics' are probably really types, i.e. 'person', 'amount' or
'time'. 'Characteristics' isn't a bad label for types. Types signify
the absolute that is known about a name, e.g. that the "Buyer"
is a person, before the actual person or number or point in time
is known. That is, all that is known about a name when writing
a template, which is not a concrete contract yet. The type is the
only thing understood about the names, because the computer
does not understand the meaning of the word 'buyer.' From
the line '"Buyer" is a person' it does understand that it is a
person. But it has no concept of what a 'buyer' is, it is but a

79 The first higher programming language in commercial use, conceived by
Backus in 1953 and to this day a standard in high-performance computing.

Computational Law

BEST BEFORE APRIL 2020 87 LEXON

label for humans. It actually gets stripped out and replaced by
a number when the code is compiled for the machine.

Types are also what makes programming higher-order
logic and how different programming languages use different
types in differently ways, is a major differentiator among them.
It's one of the most important categories whether a language
is hard-, soft-, statically or dynamically typed (Lexon is statically
hard-typed).

Types also determine what verbs a name can be used
with. Only persons can certify. Only amounts can be paid. As it
turns out, the 'reasoning' that Leibniz looked for really rests on
the meta-data that is expressed in these relationships between
names. The cobweb that verbs extend between names is the
actual meaning of the contract. One can copy-paste a contract
many times, if only the names of persons, times and amounts
are changed, the logic of all these agreements remains the
same. What defines the logic of a contract are the individual
relationships in it. They are actually the more useful expression,
e.g. of what a 'buyer' is in the concrete context of a concrete
contract – more useful than what the pseudo-universal, but re-
ally blurry meaning of the word 'buyer' could offer (pg. 116).

 89

PROCESSING
MEANING

"[Regulation] requiring companies to explain
decisions reached by artificial intelligence (AI) seem-
ingly failed to grasp just how complex machine learn-
ing was becoming."80

Financial Times

This section explains how Lexon is different from other com-
puter languages. It has a technical subject matter but does not
require prerequisite technical knowledge. This context has
helped others to get a better idea of Lexon's potential and un-
derstand how to write digital contracts.

80 Daniel Winter: Too much information? The new challenge for decision-
makers; Financial Times 12/13/19.

 91

Abstract Syntax Trees

At the heart of Lexon’s
power lies the Abstract
Syntax Tree (AST), an in-
termediate format that
every compiler81 is trans-
lating its input (program
code) to, so as to then
create its output (execut-
able programs) from. So
does Lexon.

To quote Wikipedia, an
AST is:

“a tree representation of the abstract syntactic
structure of source code written in a programming
language … ‘abstract’ in the sense that it does not
represent every detail appearing in the real syntax,
but rather just the structural, content-related de-
tails.” 82

The tree reflects the program that it was created from, which
will usually be speaking of things like files, data and algorithms.
The novelty is that Lexon creates an AST directly from the legal
prose of a contract, resulting into an AST that consists of sub-
jects, objects and predicates, which in its very structure cap-
tures the structure of a document and of natural language, and

81 A compiler – by and large – is a program that reads program code that a
programmer has written to create a new program, and turns it into machine
code that a computer can execute, thereby bringing to new program into
existence.
82 https://en.wikipedia.org/wiki/Abstract_syntax_tree

Fig 17 – AST example from Wikipedia

Processing Meaning

LEXON 92 0.3.5.9.3

therefore captures more high-level ‘meaning’ than ASTs of
other languages.

It is because the Lexon language is closer to human lan-
guage, that the resulting AST shapes up closer to human
thought and natural language grammar. This allows for output
that is likewise closer to how humans communicate. Because
with Lexon, relationships between entities are stored in the way
that humans reason about them. And as is well known today,
this metadata – the relationships – can be very powerful.

Lexon crosses a crucial threshold by being fully conform-
ant to natural language grammar. This results into a quantum
leap of sorts that does not happen as long as a language just
edges close. It does not matter in this regard that Lexon's read-
ability is achieved by defining a subset of natural language
grammar, instead of being able to handle just any prose.

Beyond the grammar, the document structure also plays
a key role for Lexon’s readability. It is also reflected in a Lexon
AST (Fig 28, pg. 104).

Everything else follows from there. The parsing and com-
pilation process to create an AST is per se not special, every
compiler does this. But because of its higher abstraction level,
the Lexon AST captures something that ASTs normally do not:
the abstract ‘meaning’ of a text.

A Thought Experiment
The difference in abstraction levels can be illustrated by con-
trasting Lexon to the program language of choice for
Ethereum, Solidity.83 A frequent question is if one could also
(automatedly) translate from Solidity to Lexon – i.e. the other

83 Solidity is the most popular program language for blockchain smart con-
tracts. It is the main language of Ethereum, i.e. to create code running on
the Ethereum blockchain or on any private or enterprise clone of it. See Fig
4 on pg. 18 for how it looks.

Processing Meaning

BEST BEFORE APRIL 2020 93 LEXON

way around than what Lexon is made for. This is an understand-
able request, as many projects have invested in Solidity pro-
grams and now realize that it would be nice to have them as
readable as Lexon code.

The question is interesting in many ways. However, the
incorrect but truthful answer to it is “No:” translation from So-
lidity to Lexon is not possible in the sense that people mean it.
This is true, even though 'technically' it would have to be a
“Yes:” it is certainly possible to automatedly translate Solidity
into Lexon, because both are Turing Complete languages.84

But the answer is “No” regarding the intent of people’s
question, which is: would it be possible to get nicely readable
Lexon code from such inverse translation. That would not quite
be the case.

The result would be more readable than the Solidity
code, offering the same 0-learning curve regarding both gram-
mar and vocabulary. But it would show the lower-level structure
of Solidity, not that of the human thought behind it, not the
'business logic'. Smart contracts of realistic complexity would
turn out logically convoluted – reflective of the Solidity code –
and would lack the essential feature of Lexon code: being not
only written in natural language words but also structured in a
coherent way, e.g. such that it can pass as the prose of a legally
enforceable contract. Code translated from Solidity would not
– as original Lexon code does – express in clear terms the meet-
ing of the minds that a judge will be looking for, and without

84 It is technically guaranteed that any program, programmed in any lan-
guage, can be translated into any other language, as long as both languages
are ‘Turing Complete’: which basically requires that both languages have
variables, loops and branches. This is not a completely moot point, as for
example Bitcoin and BigchainDB use transaction logic that is not Turing
Complete; and the reason for the complex gas metering system in
Ethereum – which counts and bills every single instruction executed – is to
address a challenge that arises from allowing loops in Ethereum smart con-
tracts.

Processing Meaning

LEXON 94 0.3.5.9.3

which there may not be a legally binding agreement in the first
place.

So, while you would end up with a working Lexon pro-
gram, it would be almost as unreadable for non-programmers
as Solidity code always is.

Words and grammar would turn out clear enough, but the
logic presented would still force people to think like program-
mers. It is precisely the ‘meaning’ that the Lexon AST captures
that cannot automatically be added when a Solidity program is
the starting point. Because the Solidity code simply lacks this
higher level of abstraction. It is actually the first step of the work
of a Solidity coder, to leave it behind.

Processing Meaning

BEST BEFORE APRIL 2020 95 LEXON

What Use is an AST?

The abstract syntax tree (AST) is an intermediary step. It is cre-
ated and already deleted again in sub seconds, having helped
to create lower level code from higher level code. Often to
translate a 3rd generation language like C++, Java or Solidity
down into the lowest level, the 1st generation language, called
machine code.85

A compiler builds up the tree, node for node, while read-
ing ('parsing') the human-written program text that it is to
translate. The purpose of this is to pre-arrange the elements of
the program into a meaningful order that will help to then cre-
ate the output from a consistent, holistic description of the pro-
gram: the AST. The compiler then steps through the tree, trav-
ersing all its nodes, and produces the output: e.g. a string of
hexadecimal numbers, that a CPU can actually process.

An AST is a data structure in a compiler, which is itself a
program. ASTs are not usually visualized, there is also no stand-
ard for them, every compiler has its own way. The AST is often
not even the only data tree representation of a program during
its compilation. E.g. there can be a Parse Tree before and a
Document Tree after that are optimized for a specific step in
the input or output.

An AST is also always used for analysis of the code, to
check the correctness of the input (the program). This happens
right after the tree is complete. And that’s where in Lexon’s

85 With language systems like Java, C#, Erlang or Solidity, the case is more
complex, because a virtual machine (VM) is involved. This introduces an in-
termediary step: the compiler compiles not into machine code but into op
codes, a very low-level input to the virtual machine to execute at a later
time. The VM is itself a program that consists of machine code, the lowest
level there is. This additional step does not make a difference regarding this
discussion about ASTs. The AST is still in all cases the first internal represen-
tation that a compiler creates.

Processing Meaning

LEXON 96 0.3.5.9.3

case it gets very interesting, because Lexon can use the tree to
analyze legal contracts, on the level of their intent.

A BASIC AST Example
If a BASIC86 compiler (itself a program, usually written in C) pro-
cesses this BASIC code snippet:

print 1 + 2 BASIC

Fig 18 – BASIC example program: print 1 + 2

It creates as intermediary step this AST data structure:

Fig 19 – AST for: print 1 + 2

From this AST snippet the compiler then creates the machine
language87 that a computer understands and can execute.

86 BASIC is the most-used programming language in the world because it is
built into virtually every spreadsheet software.
87 After creating this AST from the source code, the compiler then traverses
it from the top, going left where possible, down were possible, i.e. in the
order: print, +, 1, 2. Whenever the traversal hits a dead end (1, 2) or comes
‘back up’ through a node being done with all its down-branches (+, print),
results are being created. I.e. in the order: 1, 2, +, print. This is the order of
things that is required by the machine language that everything has to be

Processing Meaning

BEST BEFORE APRIL 2020 97 LEXON

Just to make a point, this will look somewhat like this:

10100001 10111100 10010011 00000100
00001000 00000011 00000101 11000000
10010011 00000100 00001000 10100011

Fig 20 – example of machine language

The tree is the intermediary step that helps the compiler to
translate the BASIC code (Fig 18) to machine language (Fig 20).

But, importantly, the same tree would be produced by:

print (1 + 2) BASIC

Fig 21 – BASIC example program: print (1+2)

Because the brackets are redundant – they don’t add any
meaning in this case – the compiler does away with them when
determining the order of the nodes88 of the AST.

Note that neither the programmer, nor the user of a
program usually bother about the AST, nor about the machine
code. We are looking at it to make a point.

translated to. The resulting commands in machine language will basically
be: remember 1, remember 2, add up and remember the last two things you
remember, print the last thing you remember. This is called stack-based be-
cause a useful metaphor for this way of managing values is a stack of cards
on which they are put on and drawn from. Note how perfectly anaphoric
this is as it uses no names for values, only relative, context sensitive refer-
ences. An alternate way this can play out on the machine level is: assign 1
to A, assign 2 to B, add A and B and put the result into A, print A. This is
called register-based and executes faster. Note that in both cases the ma-
chine needs the commands in the same order that is practically obtainable
from the AST.
88 In a tree structure, the points where branches occur, and also the end
points, are called nodes. In this document’s AST visualizations, they are the
bubbles. The connections between nodes are called ‘edges.’

Processing Meaning

LEXON 98 0.3.5.9.3

A Lexon AST Example
In Lexon’s case, a useful code example may be:

The “Signer” certifies the “Data.” LEXON

Fig 22 – LEXON example code: The Signer certifies the Data.

Resulting in this AST:

Fig 23 – AST for: “Signer” certifies “Data.”

Note that – while all explained before holds – this AST clearly
expresses a relationship of the natural language grammar ele-
ments verb (certify), subject (Signer), and object (Data). This is
very different from the previous, more mathematical, but typi-
cal BASIC example.

But like in the BASIC example, what matters in the Lexon
AST are the semantics, not the syntax: the exact same tree
would be created by:

“Signer” certifies “Data.” LEXON

because the missing determiners (“the”) do not change the
meaning. They have as little influence on the actual functional-
ity as the missing brackets had in Fig 21.

Processing Meaning

BEST BEFORE APRIL 2020 99 LEXON

It is also intentional that the top node of this AST snippet
reads ‘certify’ and not ‘certifies’: the natural language inflec-
tion was discarded; this detail is not needed in the tree. In fact,
the role of the inflection, to support the connection to the sub-
ject, is assumed by the edge that connects Signer and certify –
including the fact that it is the first edge, counting from left.

ASTs focus on Meaning
As can be seen from these examples of BASIC and Lexon code,
the ASTs, at heart, express the same thing as the code ex-
presses but reduce it to the meaningful elements and store it
in a way that is more suitable to the intended use: to create
meaningful output from it.

A tree format has an advantage in expressiveness: while
code is 1-dimensional – it only reads forward, in sequence, as
any text does – a tree is multi-dimensional: each node can have
many connections.89 This is used in a tree representation to ex-
press relationships that in code have to be written sequentially
– e.g. by using brackets, or by simply lining things up. As an
example, a conditional branch in code may look like:

IF a THEN b ELSE c BASIC

Fig 24 – BASIC code example: IF a THEN b ELSE c

Logically, there is no particular reason that the ELSE part should
be listed after the THEN part. Machine language, by the way,
often has it vice versa: the else part being written before the
THEN code. An AST depicts this in a clearer, two-dimensional

89 In the interest of the point to be made, and for the benefit of the non-
technical reader, the depiction of lists and strings in the ASTs has been sim-
plified.

Processing Meaning

LEXON 100 0.3.5.9.3

way, with one root node (if) and three dependent nodes (a, b
and c):

Fig 25 – AST for: if a then b else c

This paints a clearer picture of how all nodes (a, b, c) share the
if-node as nexus.

Trees lack the ‘sugar’, as programmers call it, that makes
a program more readable to the human eye, and they break
out of the straight jacket of sequential order that written text
has to conform to.90 They leave out unimportant and redundant
detail and normalize the logic.

ASTs abstract from Syntax
ASTs also do away with the idiosyncrasies of languages, some-
what in passing, they just have to.

For example, the following three code examples – in the
programming languages BASIC, Lisp and Lua respectively – all
result in the same AST. Because they all mean the same, even
though they look different when spelled out in three different
programming languages as shown here:

90 The very first higher programming language, Konrad Zuse's Plankalkül,
actually used a 2-dimensional notation, following Frege's Begriffsschrift. –
https://en.wikipedia.org/wiki/Plankalkül

Processing Meaning

BEST BEFORE APRIL 2020 101 LEXON

LET a = 1 + 2 : PRINT a BASIC

(let ((a (+ 1 2))) (print a)) Lisp

a = 1 + 2; print(a) Lua

Fig 26 – same example in BASIC, Lisp and Lua.

These would all result into this abstract syntax tree:

Fig 27 – multi-lingual AST for: a := 1 + 2, print a

Which illustrates how the AST is by nature something that is
more abstract than a programming language: a unifier across
different languages, focused on the payload of a program.

The AST distills the content, shedding the form it was ar-
ticulated in.91

91 Because the compilers for BASIC, Lisp and Lua are all different programs,
with their own specific needs and optimizations, the respective real data

Processing Meaning

LEXON 102 0.3.5.9.3

Because the languages in our example are by nature sim-
ilar92 they all produce the same abstraction, the same AST. In
the inverse, this also means: these languages all require the
same level of abstract, technical thinking from their program-
mers. The AST does not add things. Its creation is by virtue of
a transformation, from a different way to write the same logic
– i.e. from the source code, as written by the programmer – to
the internal representation of the AST, to be able to then out-
put what a machine can 'understand.'

Lexon, does not share the AST with other languages.
BASIC, Lisp and Lua are languages of the 3rd and 4th generation.
Lexon claims to be the first member of the 6th generation of
languages.93 Nowhere does that become clearer than how dif-
ferent its AST is.

structures used to store the ASP may be more complex. The graphic given
here is a simplification but the point stands: the differences between the
language syntaxes are cancelled out. Especially the order of numbers, op-
erators and variables that is so diverse between e.g. BASIC and Lisp, is nor-
malized to the same structure in the AST. As an aside, the AST also explains
the logic behind the peculiar order of things in Lisp.
92 BASIC and Lisp are not usually said to be similar. But they are, when com-
pared to machine code, Assembler, or Lexon.
93 On language generations see footnote 23, pg. 23.

Processing Meaning

BEST BEFORE APRIL 2020 103 LEXON

ASTs and Natural Language

Lexon can convert legal prose into an AST, without loss, which
in turn is made possible because the shape of the Lexon AST
reflects natural language grammar. As is visible in the Lexon
AST example in Fig 23, pg. 98: the left-hand node holds the
subject, the right-hand node the object and the root node at
the top, the verb.

Example of a Lexon AST
The Lexon AST for the escrow code from page 3, looks like this:

Processing Meaning

LEXON 104 0.3.5.9.3

Fig 28 – Lexon AST for Escrow Example

This tree is a self-explanatory graph consisting of clause names
(Escrow, Pay Out, Pay Back), groups (TERMS, DEFINITIONS,
RECITALS, CLAUSES), subjects (Payer, Arbiter), objects

Processing Meaning

BEST BEFORE APRIL 2020 105 LEXON

(Amount, Escrow, Payee, Arbiter, Fee, Payer), and verbs (pay,
appoint, fix).

Below the nodes of the document parts (DEFINITIONS,
RECITALS, CLAUSES) the high-level that is the document struc-
ture blends (head, definition, recital, clauses) with the gram-
matical level below it (subjects, verbs, objects). The AST literally
shows the latter as levels below the former.

Note that all names of all subjects and objects in this AST
have been freely chosen by the programmer and could be any
combination of words, while the verbs are part of the limited
base vocabulary of Lexon. This allows both for unlimited varia-
tion in crafting the contract text (through freely defined nouns)
and a limit to the required learning (of verbs) to write Lexon
code.

Example of a Solidity AST
In so far as the impression gained from the above graph may
be a trivial one – "how else should it look really" – the contrast
with the blockchain language of choice – Solidity – may be en-
lightening.

The AST given below is that of a 'native' Solidity program
of similar functionality,94 proposed by Pranav K on medium.95
The AST is much bigger than the AST of the Lexon example,
because Solidity is operating ‘closer to the bits and bytes,’
which is normal for a 3rd generation language like Solidity. It is
therefore more verbose and needs more words to say the same
thing.

94 Pranav K. on medium 2017 – https://medium.com/@pranav.89/smart-con-
tracting-simplified-escrow-in-solidity-ethereum-b19761e8fe74
95 Fig 29 (pg. 48) serve to give an idea of the size of the AST. A more read-
able version of the same AST can be found in the Appendix, Fig 21, pg. 68.

Processing Meaning

LEXON 106 0.3.5.9.3

Fig 29 – Solidity AST for a Similar Escrow Example

From the labels of the nodes – see the cut out, Fig 30,
below – it is apparent that this AST is concerned with a com-
pletely different world, a different set of elements and patterns.
There are no subjects, objects and verbs but object references,
function calls and parameters instead.

The cut out below shows the payout functionality. As can
be seen, a different, more conventional concept of a program
is revealed, that has nothing to do with natural language. The
functionality shown in the tree can be cobbled together with a
bit of study (and that can be fun), but it is not obvious, instead
rather confusing as to the intended purpose – i.e. the ‘meaning’
of it all.

It is apparent that this Solidity AST is fundamentally dif-
ferent to the Lexon AST because it makes different use of
nodes: it does not mirror natural language and its grammar in-
stead reflects the algorithm-friendly abstractions that have be-
come the mainstream of programming languages since the
definition of ALGOL in 1958. This vernacular has become so
common place that today, programmers do not really register
its presence anymore. It’s just how computers are programmed
in this day and age. The question "how could it be any differ-
ent" for this tree, the Solidity AST (Fig 29 & Fig 30), is as perti-
nent for a programmer as it is for the Lexon AST (Fig 28) for the
naïve observer. It reflects how both programmers and lawyers
think very differently and might find it hard to change. Lexon
bridges this chasm.

Processing Meaning

BEST BEFORE APRIL 2020 107 LEXON

Fig 30 – Solidity AST for a Similar Escrow Example (Detail)

Processing Meaning

LEXON 108 0.3.5.9.3

A More Meaningful Level of Abstraction
In the end what makes the difference is not just that Lexon’s
vocabulary stays closer to plain English, and not just that
Lexon’s grammar is 'more natural' than that of other program
languages, but that Lexon’s abstractions operate on a higher
level. And this results in ASTs that express meaning that is not
present in source code written in Solidity, and therefore also
not in Solidity's ASTs. This is the essential bit that would be
found missing when translating Solidity back to Lexon.

Because until now, as a required first step when program-
ming, this high-level meaning of a program is shred to finer
grained piecemeal and rendered unrecognizable. Amazingly, it
is the business logic of a program itself that does routinely not
survive impact. C. Lopes et al. in their paper Toward Naturalistic
Programming write:

“Researchers are constantly looking for ways to
express the programs in a form that more closely fol-
lows the way programmers think before they are
forced to break their thoughts in operational de-
tails imposed by the existing programming lan-
guages. We know that this is possible, because
when programmers are asked to explain their code,
they do so concisely, skipping operational details,
sometimes using a thought flow that is quite differ-
ent from the control flow in the code.”96

The building blocks that programs are commonly created
from today are just too subtle to capture the higher level. The
more so, the lower-level (early-generation) the language is.

As a metaphor, the difference could be described by mol-
ecules vs. atoms: Solidity loses (or never has) the information

96 C. V. Lopes, P. Dourish, D. H. Lorenz, K. Lieberherr, 2003. Beyond AOP:
toward naturalistic programming. SIGPLAN Not. 38, 12 (December 2003),
34-43. DOI=http://dx.doi.org/10.1145/966051.966058 – emphasis added.

Processing Meaning

BEST BEFORE APRIL 2020 109 LEXON

about how the atoms are interconnected, and therefore, does
not have the notion of molecules and does not reflect it for a
reader to see. Solidity programs may not lack functionality, but
the Solidity AST will only talk of O and H, and not of H2O, as
the Lexon AST does. The connection of O and H would exist
implicitly in the Solidity program. But in the Lexon AST, in this
metaphor, the H2O molecule would be spelled out explicitly.

Thus, because of the high level that Lexon has as a lan-
guage, the ‘meaning’ of text written in Lexon is captured in
Lexon’s AST in a way not present in the AST of a lower level
language.

This does not make Lexon AI but it does add something
new that carries quite far.

Processing Meaning

LEXON 110 0.3.5.9.3

Artificial Intelligence Tooling

"Machines will be capable, within twenty years,
of doing any work a man can do."

Herbert A. Simon in 1956

While Lexon is no attempt at sentience, it owes its capabilities
to using the models and tools developed for strong AI.97 In fair-
ness, all modern program languages do that, but Lexon uses
them in a back-to-thee-roots style.

Lexon’s approach might be regarded as ‘coming full cir-
cle,’ because ASTs are created by programs (compilers are
themselves programs) that implement grammars that are de-
fined using a notation called BNF98 that was invented to de-
scribe the grammar of programming languages, and which was
based on the Context Free Grammar (CFG)99 popularized by
the linguist Noam Chomsky. From right to left:

CFG ⟶ BNF ⟶ grammar ⟶ compiler ⟶	AST	

Fig 31 – From Context Free Grammar to Abstract Syntax Tree

The linguistic research this came out of was in fact machine-
oriented as his MIT work in the day was financed by the DoD in
the hopes to produce natural speech-guided weapons

97 Strong AI was the hope of researchers in the 50ies, 60ies and 80ies that
artificial general intelligence would be achievable.
98 Backus-Naur Form – “a notation technique for context-free grammars, of-
ten used to describe the syntax of languages used in computing, such as
computer programming languages, document formats, instruction sets and
communication protocols. They are applied wherever exact descriptions of
languages are needed“ – https://en.wikipedia.org/wiki/Backus–Naur_form
99 https://en.wikipedia.org/wiki/Context-free_grammar

Processing Meaning

BEST BEFORE APRIL 2020 111 LEXON

systems.100 Context Free Grammar was invented to describe
and understand e.g. English better but was instead very suc-
cessfully used to create a notation, BNF, that became the
standard to describe the grammars of program languages, first
among them ALGOL in 1960.101

As for linguistics, Context Free Grammars turned out to
be not powerful enough to describe natural languages and the
space moved on. Chomsky has long left this approach behind.
No speech-controlled weapons systems were developed ei-
ther, which is interesting, too. Did the research not work out?
But in computer sciences, the model of Context Free Grammar
thrived. BNF is in use for 60 years now to express the grammars
of languages of the ‘3rd generation’ – the likes of C, C++, Java
– but also for the more logic-leaning languages like Lisp and
Prolog that had once the hopes for strong AI riding on them.

Lexon applies Context Free Grammar, in the form of BNF,
back to natural language, where the model came from, to cre-
ate a program language in the intersection of what is expressi-
ble in natural language and what is parseable by a machine. So
that a program can be expressed in a way that reads as easy as

100 “Anthony Debons, a colonel in the United States Air Force, said, ‘much
of the research conducted at MIT by Chomsky and his colleagues [has] direct
application to the efforts undertaken by military scientists to develop ... lan-
guages for computer operations in military command and control systems.’
Between 1963 and 1965 Chomsky consulted on a military-sponsored pro-
ject ‘to establish natural language as an operational language for command
and control.’ Quoting Debons, A (1971). Alt, F.; Rubinoff, M. (eds.). "Com-
mand and Control: Technology and Social Impact". Advances in Computers.
New York: Academic Press. 11: pg. 354 // and Newell, A. (1968). Bugliarello,
George (ed.). Bioengineering: An Engineering View. Proceedings of a Sym-
posium on the Engineering Significance of the Biological Sciences. San Fran-
cisco. pg. 271.
https://en.wikipedia.org/wiki/Noam_Chomsky
101 Wikipedia speculates that Backus must have been familiar with Chom-
sky's work but note that Chomsky researched mechanical translation in his
early days at the MIT in the mid 50ies, before describing CFG. It is not en-
tirely clear that the inspiration could not have flown the other way around,
too.

Processing Meaning

LEXON 112 0.3.5.9.3

natural language but can also be conveniently processed by a
computer.

A More Elegant Stack
Regarding natural language processing, Lexon's approach can-
cels out the layer of the computer language itself. Because orig-
inally,

(1st layer) BNF would be

(2nd layer) used to define a language like Lisp

(3rd layer) that would then be used to program AI, in Lisp

(4th layer) that would process natural language.

The notion being that thought is something behind language,
separate from it, hopefully captured on the 3rd level.

In other words, In the standard approach to AI in the
70ies, the processing of natural language would have been the
subject of the program programmed in Lisp, the 3rd level.

Lexon does not go for sentience and does not try to cap-
ture thought in analyzed form on the 3rd level, but uses natural
language more directly, one layer deeper. With Lexon, it is the
grammar of Lexon itself where natural language comes into
play.

(1st layer) BNF is used to

(2nd layer) define controlled natural language i.e. Lexon

(3rd layer) to write digital contracts in natural language.

There is no notion of AI, but natural language grammar is per-
vasive, reigning across all three layers. Because BNF itself was
modelled on CFG that were invented to describe human lan-
guages. While it may not be the path to machine awareness,
this is useful.

Processing Meaning

BEST BEFORE APRIL 2020 113 LEXON

With Lexon, the place of natural language is directly ad-
jacent to BNF, i.e. supported directly by the tool modeled on
Context Free Grammar, instead of using BNF to build a non-
natural language that then is used to program a program to
process natural language.

For who has the taste for it, this is a more elegant and
promising stack. With Lexon, ‘meaning’ is processed on the
level comparable to the Lisp program code, instead of its
runtime data. It drops the idea to separate intelligence and lan-
guage and to express thought in anything else than natural lan-
guage, unreflectedly. It doesn't try to have magic operating
'behind' the language, expressed in math.

This touches on a deep and controversial question of lin-
guistics: is there, for humans, a neutral representation of reason
'behind' language? One that can intuitively be imagined to be
the common well of speech no matter in what language a pol-
yglot expresses herself? Leibniz thought so but didn’t find
much. Humboldt felt that thought could only exist in language
and Loglan was invented by James Brown to find out if a better
language would allow for better thought (pg. 172). Orwell had
no doubt that language was needed for thinking (pg. 170) to
the degree that degrading language could make thinking im-
possible. Chomsky subscribed to the hypothesis that an innate
faculty of speech existed that would then give rise to language,
but later moved away from this view.

Leibniz specifically proposed his characteristica universalis
(pg. 71) as a necessary symbolism that would have to be dis-
covered first, to express pure reason in it, cleaned of the pecu-
liarities of natural language, so that one could automate rea-
soning. Suffice it to say that linguists cannot agree and the 20th
century saw a back and forth. In so far as strong AI research in
the 70ies very much assumed that sentience should be achiev-
able on a more mathematical level than language, Lexon is a
late but timely complement to that, mirroring the more ne-
glected half of linguistic research, which posits that thought
might not be separable from language.

Processing Meaning

LEXON 114 0.3.5.9.3

Preservation Instead of Decomposition
This may provide an alternative answer to the 70ies quest to
find a manageable way to have programs self-modify 102 –
something that inevitably makes programs impossible to de-
bug and was therefore abandoned, if with a heavy heart. Self-
modification looked promising because the thinking went: for
it to be AI, something more than what the programmers put in
would have to come out. Not just more numbers or words but
more insight, more logic. In that light, what would be more
plausible than to suspect this 'more' to be found in newly, self-
created code. If the third level (pg. 112), the Lisp program,
could 'reflect' upon itself and modify itself even, it could per-
haps produce emergent results on level 4. This was an attempt
to break through the limitations of the standard von Neumann
architecture of computers that separates code from data, i.e.
the program from its subject.

Lexon follows a different path: it steps out of the way. It
does not add anything, but instead preserves the structure of
the input so well that the output has stronger semblance to hu-
man communication. The translation step is cut out that went
from input into meaning and back – i.e. from language to math
back to language. There is still processing, a transformation
from input to output. But no attempt to transform thought and
logic, expressed in human language, into its condensed es-
sence and back. No attempt, that is, to create 'intelligence.'
But in so far as a program takes human input to produce mean-
ingful results, Lexon can transport more of the human-under-
standable mesh of meaning from input to output, intact. This
has practical benefits ranging from improved communication
about code, when writing it; over the long-elusive price of self-
documentation; to a quantum leap in front-end generation and
literally involving different parts of the brain in programming.

102 For an example, see FLOW-MATIC, pg. 297, line 12. This was not pro-
grammed in a self-modifying way to create AI though but to save space.

Processing Meaning

BEST BEFORE APRIL 2020 115 LEXON

Controlled Language
Throughout, Lexon code lives on a very high level: the example
of Fig 22, pg. 98 – Signer certifies Data – expresses that some-
one should digitally sign some data, without at that point caring
about who or what. In other languages this is a fringe case that
will routinely require many lines of code. Which illustrates how
a Lexon program is much closer to real-world people, and their
actions, as its subject that is reasoned about.

The focus on this high level of the language results into
this high-level AST. Or, flipping it around, designing for such
high-level AST is what enabled such a high-level language.

This approach is called controlled natural language: not
the attempt to parse just any legal text – i.e. not to try Natural
Language Processing, the ultimate dream of Computational
Law – but instead, to require a subset of natural language gram-
mar as the language that the legal contract must be written in.
A subset that can then with reasonable effort be processed
with very conventional compiler build tools.

This approach turned out to be more powerful than im-
agined.

Processing Meaning

LEXON 116 0.3.5.9.3

Meaning

ASTs of complex programs can easily consist of millions of
nodes; but only in a casual sense can it be said that an AST hold
‘meaning.’ An AST will reflect meaning, to a lesser or higher
degree and it can certainly be used to create output that is
based on the meaning that it reflects, the AST serving as con-
duit. The 'signified' that is 'meant' may not be present, but its
structure is, and this is enough for production.

The AST, describing relationships in its edges, could be
seen as the meta data of the signified. As is well understood
today, this can often be more powerful than the actual data.

Metadata instead of Meaning
E.g. an AST has no notion at all what a ‘buyer’ is and the actual
name of a definition (e.g. the text string “Buyer” itself) is rou-
tinely stripped out of the information that goes into an AST,
because the machine has no use for it. There is no sentience in
an AST to which this name would mean anything. However, the
AST reflects an arbitrary entity’s relationships with some other
entity and the rights and options those entities have against
each other. This may actually be the more relevant aspect of
the notion of what a ‘buyer’ is; more relevant than the name
“Buyer!”

Because, the abstract notion of a ‘buyer’ will be under-
stood slightly different by any thinker. The idea that there is
one abstract image of a buyer that everyone shares is a simpli-
fication that is not too helpful but quite obscuring, and points
to the core of every honest dispute over agreements where
people thought they understood each other but they didn’t.

The reality is that there are myriads of different, private
associations in billions of brains across the globe that are asso-
ciated with the word ‘buyer.’ You'd be lucky to rely on a

Processing Meaning

BEST BEFORE APRIL 2020 117 LEXON

common understanding of the word and not get into a dispute
over an honest misunderstanding.

In that light, it is more useful to have a precisely defined
pattern – the edges in the AST – that describe one specific
buyer, the one and only that is meant by the specific contract
in question that the AST describes. The specificness renders
obsolete the role that the inexact and blurry name “Buyer”
could play. The actual functionality of the contract is the better
description of exactly that ‘buyer’ that is meant in the specific
instance. It doesn’t matter either if the ‘buyer’ is also a ‘payer’
etc. These categories are all replaced by the very specific rights
the Lexon code bestows.

Obviously, this reflects how legal contracts work today:
they use words like ‘buyer’ but define them more precisely as
capitalized “Buyer”, a term then understood to be one specific
person and not meaning all possible ‘buyers.’ The entire con-
tract being but the listing of the actual rights and obligations
of that person without relying on the original meaning of the
word. Clarifications will even be provided as to what this spe-
cific Buyer may not be entitled to that the word 'buyer' may
otherwise imply. At which point confusion of 'buyer' and 'Buy-
er' might have problematic consequences and it might as well
be better if a different term than 'buyer' was used, e.g.
"Party 1". Or no word at all – as is the case in Lexon's 'brain.'

Lexon as AI (not)
Looking deeper into the meaning of 'meaning' can lead to the
case that Lexon is, in fact, AI. This is not what we claim but the
exercise is instructive. This taps into an ancient flame war.

There is not a lot of consensus now but until about 400
years ago, the term ‘meaning’ was commonly understood as
something that is pointed to. In the sense that a sign means
something, as does a word, as well as a name and a symbol.

Processing Meaning

LEXON 118 0.3.5.9.3

But like a ‘Pegasus,’ what is pointed to, does not necessarily
have to exist.

Aristotle calls that something the ‘essence’, which cannot
be predicated of anything else.103 The Lexon AST does not con-
tain this essence, it only points to it. But this is true as well for
words and texts: they can point to meaning but are not the es-
sence themselves. Because the essence is held to exist inde-
pendently of the words and explanations describing it. And
many words in many languages are thought by many to point
to the same essence.104

Talking about AI, the question becomes what our brains
are. Technically, they are pattern processors of a power far su-
perior to current computer hardware: the cortex alone has 16
billion parallel cores, as opposed to 10 million that the most
parallelized super computer fields today.105 It is fair to assume
that such processing power can create convincing emergent
effects. And we are 7 billion, heavily interacting.

But Aristotle it seems would not have claimed that our
brains contain essence either. Our thoughts, when we think in
words, only point to it, like a document.106 Which means that
the Lexon AST, in so far as it reflects meaning – or essence –
does the same as our brains. It operates on symbols. Hopefully
logically. It does not contain the essence; it just processes the
pointers to it. This can be said of any program. But Lexon pro-
grams will produce output that is more familiar to our brain
processing, as it leaves the structure intact that we use, and
processes a subset of the protocol we apply: natural language.

 Extreme Constructivism of course claims that there is
not actually anything that is pointed to, no essence, and that

103 https://plato.stanford.edu/entries/aristotle-metaphysics/
104 On the exploration of the relationship between language and thinking,
see Appendix IV: Constructed Human Languages, from pg. 309.
105 https://en.wikipedia.org/wiki/Sunway_TaihuLight
106 Although I fully believe Rick Dudley that he could think before he could
speak or think in words.

Processing Meaning

BEST BEFORE APRIL 2020 119 LEXON

the reference patterns that our thoughts are, only ever refer to
each other. What is pointed to, the meaning, was itself only
pointers. On that premise, the Lexon AST could then be said
to hold meaning proper.

“The term ‘theory of meaning’ has figured, in
one way or another, in a great number of philosoph-
ical disputes over the last century. Unfortunately, this
term has also been used to mean a great number of
different things. … it is worth noting that one prom-
inent tradition in the philosophy of language denies
that there are facts about the meanings of linguistic
expressions.”107

Let's say ‘meaning’ in this context, deserves quotes.

107 https://plato.stanford.edu/entries/meaning/

 121

SCOPE OF
APPLICATION

"In considering any new subject, there is fre-
quently a tendency, first, to overrate what we find to
be already interesting or remarkable; and, secondly,
by a sort of natural reaction, to undervalue the true
state of the case, when we do discover that our no-
tions have surpassed those that were really tenable."

Ada Lovelace, Note G, 1842

When legal professionals are excited about the possibilities of
Lexon, they are really excited about the possibilities that arise
from a legal contract being truthfully captured as AST. The part
of the 'meaning' of a contract that Lexon captures is the part
that matters for automation.

As described above, while Lexon does not capture the
meaning of defined names, it does understand their express
relationships. And Lexon does ‘understand’ a number of verbs.

The following is a discussion of technical and functional
aspects that illustrate the reach that Lexon is soon to develop.

Scope of Application

LEXON 122 0.3.5.9.3

Output & Portability

Solidity & Sophia
The Lexon compiler right now creates Ethereum Solidity smart
contracts and Aeternity Sophia smart contracts from Lexon
code. More target platforms will be added in the future, includ-
ing for JavaScript, i.e. off-chain processing of contracts.

WebAssembly
The compiler can be built to WebAssembly (WASM), which
gives Lexon online editors a powerful, local install feel and is
the route to integration path e.g. with Polkadot Substrate Para-
chains.108 The WASM build is used in the three online editors at
http://demo.lexon.tech, https://remix.ethereum.org and
https://fire.aeternity.com.

Off-chain
We are also working on a stand-alone interpreter that will allow
Lexon code to be run independently of blockchains. This is in-
teresting for virtual sidechain scenarios that use conventional
full stack technology but write away hashes of their results to a
blockchain.

Prose & Glossary
The Lexon compiler from the start also created ‘even more hu-
man readable contract prose’ from Lexon code. This will be

108 https://polkadot.network/build

Scope of Application

BEST BEFORE APRIL 2020 123 LEXON

amended with a detailed, automatic glossary for every relevant
English word used in the contract.

Contract Management
The AST is used to generate input screens and runtime monitor
apps for the blockchain representation of a contract that show
how it changes state and that allow to interact with the contract
automation in the most elegant way. Significantly more produc-
tive user interfaces can be generated by using the high-level
information that Lexon code contains, than when the starting
point is 3rd generation code like Solidity.

Scope of Application

LEXON 124 0.3.5.9.3

Multi-Lingual and Multi-
Jurisdictional Code

Multilingual Code
The Lexon compiler will process different natural languages,
like German and Spanish. We tested Japanese successfully and
will trial Dutch next.

Jurisdictions
Lexon will feature automatisms to incorporate different juris-
dictions. By a standard concept known as object frameworks in
programming, different terms will acquire different meaning,
depending on context.

Domains
A similar extension mechanism will allow to define new native
verbs for Lexon, e.g. 'move' for robotics or 'format' for output.

Scope of Application

BEST BEFORE APRIL 2020 125 LEXON

Analysis

Visualization
We are working on visualization tools that will allow for visual
programming and for the creation of a visual depiction of a
contract's logic. Because Lexon 'understands' the contract
code to some degree, it can support the legal engineer by re-
flecting back what the logic of a contract is, in the form of a
chart.

Automated Tests
The Lexon AST can be used for software test processes to test
the (legal) completeness of the code (loopholes etc.), as well as
if it results in implausible results for any possible input. One
such procedure is called Monte Carlo simulation: the contract
can be bombarded with millions of different events, to see un-
der which circumstances, if any, it would produce implausible
results.

Decision Making
Simulation of Lexon code can automate the decision making of
a judge. Any smart contract could do that, but smart contracts
are almost never digitally expressed. This is not the same as
when a program is just the representation of a contract. Block-
chain smart contracts today do some things automatically but
are removed at least one full degree from being the direct ex-
pression of the meeting of the minds that a judge will look for
as ‘the contract’. Because Lexon code is that legally enforcea-
ble contract itself, the automatic decisions that can be calcu-
lated based on its AST are of a different quality. This might

Scope of Application

LEXON 126 0.3.5.9.3

seem subtle but actually is not. Especially when a contract is
complex and the history of the case long, a huge amount of
fact-finding and learning about the minutiae of a case falls by
the way side when Lexon code is used, which will result in much
fairer results because it reduces the influence of money: i.e. to
be able to pay for long hours, or to buy the more renown or
skilled story teller to argue a more convincing story in court
when facts are just too complex to understand and argue.

Expected Value
The AST can also be used to calculate the Expected Value of a
contract, a single number that businesspeople produce by as-
signing probabilities and results to different possible out-
comes. This today is slow and error prone, the AST can do it
‘for free’ and without fail. The gain of exactitude and speed is
achieved in the same way as described before: the process of
creating a mathematical model that describes the contract can
simply be skipped.

 127

DOMAINS OF
APPLICATION

Lexon's usefulness is anchored in the intersection of the block-
chain and the legal sphere and extends far beyond.

Regarding trustless technology, the fascination with
Lexon is by no means restricted to the legal domain: many ef-
forts benefit from having the algorithms at the heart of their
implementation being readable to everyone involved, pro-
grammer or not. Legally vetted or not.109

But Lexon is useful no matter who provides for the trust.
i.e. a blockchain or not. The reality of many industries today is
that they have long established trusted third parties installed
that take care of interests of the entire industry or facilitate key
functions for an entire domain. Even if these trusted third par-
ties do not plan on replacing themselves by a blockchain, they
might benefit from making their automated processes more
transparent by programming them in Lexon. As a first step to-
wards becoming a blockchain-based service or as a completely
independent effort.

The following is a list if areas where Lexon will be of help.

109 A major concern of CAOLA is that regulators might strangle the new
possibilities of blockchains before they can even be researched, much less
demonstrated. There are many projects that are by no means criminal, nei-
ther in spirit nor in practice but have not figured out their path to compli-
ance. Lexon helps to ask the right questions as it highlights problems and
allows to pull in lawyers in a much more productive way.

Domains of Application

LEXON 128 0.3.5.9.3

Private Contracting Long Tail

Lexon might facilitate legal literacy to become common place.
Normal people are empowered to create and manage their
own contracts, potentially often for cases where in the past it
was understood that the overhead of a contract would have
been too expensive. Lawyers may find additional business be-
ing asked for guidance in this extended realm of application of
private law.

Terms of Service

Lexon might help end the issue of terms of services that every-
one knows no one reads. Because Lexon code can be pro-
cessed electronically, terms of service that are articulated in
Lexon can be matched against a potential customer's personal
limits and demands. This has been tried before in regard to pri-
vacy on the web but failed, potentially because a bespoke pro-
tocol had been developed for it. TOS written in Lexon will not
require any additional effort to understand: the text of the TOS
would not need a technical companion file or anything like it.
Once the potential is understood, lawmakers might require
businesses to use Lexon to articulate their TOS, at least on the
web.

Decentralized Autonomous
Organizations

Lexon signifies a quantum leap for DAOs because it can unify
the legal and the blockchain rules that govern them. A Lexon

Domains of Application

BEST BEFORE APRIL 2020 129 LEXON

charta for a cooperative can in some jurisdiction be turned into
a legal person by the act of deploying it to the blockchain: giv-
ing a DAO legal personhood:110 the power to legally own and
deal in real world assets and legally shield members who could
otherwise, by default, be exposed to full private liability for the
DAO's actions. Contracts that this DAO closes with anyone can
then likewise be real contracts before the law. At the very least,
writing a DAO's code in Lexon will help to make sure that the
blockchain code is compliant with existing laws and regulation
and makes the rules transparent for all members.

AI Safety & Data Protection

Lexon should be the language that lawmakers use to articulate
the Robotic Laws111 in that we need now. The advantage of us-
ing Lexon is that hardware producers can be obliged to build
in the very code that the lawmakers created. The law itself, ver-
batim, then is program code. The room for honest and dishon-
est mistakes is eliminated that usually separates the patient let-
ters of a law from its implementation. By the same token, data
protection algorithms can be made transparent and mandatory
for social media and data processing organizations, public and
private. This may be the most important application of Lexon.

Trade

A natural talent of Lexon is any form of trade. This is the classic
blockchain case, but adding readability of the contracts, which

110 Only a person can own things. Human beings are 'natural persons,' while
companies and communities are 'legal persons.'
111 See footnote 14 on pg. 11

Domains of Application

LEXON 130 0.3.5.9.3

might be the missing link to convince companies to realize the
cost, speed and reliability advantages of blockchain smart con-
tracts and crypto payments.

Ex-Ante Regulation

Regulations are more specific than laws and to the degree that
they deal in concrete procedures, measurements and formulas,
they can be expressed in Lexon code. Using 'libraries', regula-
tors will be able to craft Lexon code that will allow businesses
to create contracts for themselves that will be compliant by
construction: by including the regulators' code in their con-
tracts, the proceedings are guaranteed to comply with such
regulations.

RegTech & Oversight

In RegTech, blockchains disintermediate the auditors' supervi-
sors first. They don't necessarily put auditors out of business.
For example, in a study for the European Commission the result
pointed to bank auditors' supervisors being replaced by a
blockchain concept, not the auditors themselves. When push
comes to shove someone still has to check that a hash and a
dataset really belong together.

For all the possibilities that blockchains used as
timestamping service offer for regulation, few have so far been
used. Lexon might change this because it shortens the decision
process for lawmakers and regulators who might have dragged
their feet in the face of the unknown unknowns of the new tech-
nology. The guarantees that Lexon code extends are much eas-
ier to understand, discuss and adjust to.

Domains of Application

BEST BEFORE APRIL 2020 131 LEXON

Law

Lexon might even be used as language of law. This was not a
design goal, but it was suspected that Lexon might beat the
path, first from smart contracts to legal contracts, then on to
regulations and in due course help find the gate to the auto-
mation of law. This is happening with the example for the UCC
Financial Statement (pg. 45) illustrates how using Lexon might
improve legal code and provide for a path to improve legisla-
tion that is unparalleled. This works for the UCC chapter 9 form
because the law in this case is very procedural. This is not a rare
exception though, as many statutes are very concrete and
could as such be re-articulated in Lexon.

The likely path here is one that lawmakers could for a start
be explicit about being ok with agencies using Lexon to re-ex-
press and through this automate procedures.

Governance

Lexon is a dream for all initiatives that care about improvement
of governance, e.g. of existing cooperatives, using blockchain
or not. Lexon allows to articulate the rules in clear language
and then provides certainty that they can be performed without
fail. Smart contracts can reduce overhead and costs for every
single community that governs itself. Their 'trustless' aspects –
when using a blockchain – help prevent opportunity for graft
and breach of trust. But Lexon code may just as well be run off-
chain to demonstrate that the rules stated in the charta are ap-
plied as intended. For blockchain-centric communities, Lexon
closes a gap that until now existed in the trustless world: that

112 Charles Forgy: OPS5 – http://www.pcai.com/web/ai_info/pcai_ops.html

Domains of Application

LEXON 132 0.3.5.9.3

everyone still had to trust the programmers that smart con-
tracts did what the programmers said they would.

Bills of Exchange

Bills of Exchange are a prominent example of a powerful, exist-
ing legal framework that is currently not used much, but still on
the books and a potential blockchain killer app in-waiting. BoEs
where in use for over a thousand years, they became obsolete
only recently due to electronic money transfer and credit cards.
The specialty of BoEs is how they invert the burden of proof to
seize someone's bank account. After a BoE matures there is no
further process required. Lexon allows for a BoE to be spelled
out as legally required, and at the same time managed on-
chain. On maturity they might double as facilitator of a crypto-
currency payment or serve as proof to a bank that a payment is
due.

Financial Instruments & DeFi

For any type of financial instrument, Lexon enhances the revo-
lutionary capabilities of blockchain with its trademark complete
congruence of legal contracting and automation. It will hold for
Wallstreet like for Mainstreet that people will be much more
open to a new technology when it can be made accessible in
the way that Lexon makes blockchain smart contracts transpar-
ent for all involved. This may help to tap the unrealized poten-
tial of blockchain as a transparent platform for bearer assets,
with all the risk reduction this entails. A major development that
will benefit from the availability of Lexon are liquidity-assured
CDOs that have direct access to their slice of the collateral, us-
ing digital assets and token mechanisms, even through multiple

Domains of Application

BEST BEFORE APRIL 2020 133 LEXON

steps of securitization. Lexon will make these complex instru-
ments safer by making them readable.

Provenance

OpenSC113 proposes a protocol for proving the eco claims that
underly eco seals. They will use Lexon – off-chain in the instance
– to process environmental data, e.g. satellite imagery, that is
inspected to satisfy requirements as set forth in the code, e.g.
that a forest line at a given geo coordinate has not changed.
The advantage of using Lexon for the central piece of pro-
cessing is that it makes the claim understandable for anyone
without any aspect left where a consumer who is not them-
selves a programmer would have to trust – even just trust that
the programmers did not make an honest mistake.

Academic Certification

Badges and Micro-Credentialing will change education and HR
in the coming decade. The basic premise is that former univer-
sity students will be able to give finer-grained proof of their
specific preparations for an employment they might be apply-
ing for. It's obvious how such a system should be implemented
on a blockchain network and how it would benefit from being
programmed in Lexon so that the entire process is completely
transparent. Note that technically, credentials can be realized
by simple digital signatures. A blockchain system, however, al-
lows for corrections and, in the blockchain itself, provides the
ubiquitous, always available storage platform for the badges.

113 OpenSC – https://opensc.org

Domains of Application

LEXON 134 0.3.5.9.3

Supply Chain & Trade Finance

Supply chains remain a giant blockchain play even though cur-
rent flagship efforts like by IBM114 and Maersk may not be pro-
gressing as swiftly as anticipated. The real promise is in how
procurement and nested sub-contracting can be automated
and by this made safer, faster, more reliable and much less
costly. This is a matter of interfaces and conventions being es-
tablished in the spirit of ERC115 standards, so that smart con-
tracts can interact across the blockchain that is their common
platform. Lexon will increase the circle of people who can ac-
tively shape these ecosystems and need to make informed de-
cisions to move the status quo forward without endangering
their business.

Logistics & Ride-Sharing

The real promise of ride-sharing has not been realized. It lies in
a more grass-roots version of neighborhood self-help. The fact
is that a massive number of cars ride the same routes every day.
The number of unused seats and cargo space is relatively pre-
dictable and the gigantic effort to implement carpool lanes is
an indicator of how high the value is estimated to be that is
lying untapped in a more effective organization of people's
commute. Importantly also for the environment. Novel busi-
ness models that are less cynical than Uber are banking on
blockchain technology and tokens to propose the next,
greener and more economic phase in mobility. Lexon will be

114 TradeLens – https://blog.tradelens.com/news/building-apis-for-ship-
ping-what-weve-learned-so-far
115 ERCs are those Ethereum Improvement Proposals that deal in applica-
tion-level standards and conventions – https://eips.ethereum.org/erc

Domains of Application

BEST BEFORE APRIL 2020 135 LEXON

part of this second phase and the B2B aspects of this develop-
ment, where more bespoke agreements are needed, some-
times ad hoc, but with the capacity to be plugged into block-
chain-based logistics platforms.

Future-Proofing

It is not clear which blockchain will succeed to solve today's
scalability and privacy challenges, but Lexon's versatility makes
investment into smart programming future-proof. No matter
which platform will be the main network in the future, Lexon
will be able to compile Lexon code to it. Or if for other reasons
it becomes desirable to switch from one platform to another,
Lexon makes it possible to do so with minimal disruption. This
on top of the fact that Lexon code – because of how clear it is
– reduces the risk of lock-in by programmers.

Escrow

As shown in our very first example (pg. 3), escrow is a home
game for Lexon. This is a classic blockchain strength, Lexon
merely democratizes the tool and gives it into the hands of an-
yone who is interested to use blockchain technology, without
the need to consult with a programmer to implement the de-
sired functionality. But at the same time without limits on fine-
tuning the contract to exactly what the desired functionality is.
Minor differences in the code can have a major effect with es-
crow contracts. Lexon allows full freedom to articulate con-
straints and options exactly as needed.

Domains of Application

LEXON 136 0.3.5.9.3

Wills

Last wills are another classic blockchain example that requires
maximal trust in what a smart contract actually says. In the end
they are but a special form of escrow. Wills might never be-
come big business, but the advent of stable coins is what makes
them interesting beyond crypto-maximalist. Writing a block-
chain will in Lexon might become a commodity service, as it is
so simple that a notary might offer it as value-add. There might
not even be a change in how the industry works in this regard
today. But this is less likely to come true as long as smart con-
tracts require a programmer or that you trust a third-party app
that creates the contract for you.

Wills will not be restricted to crypto assets. Any owner-
ship transfer will be possible based on the certified result of a
blockchain algorithm: a smart contract that expresses a Will
may be foremost busy with keeping track of events and provid-
ing what the desired outcome would be given those events.

Crowdfunding

Using Lexon for crowdfunding includes all non-programmers
interested in funding a project into the group of people who
can understand how the smart contract works that they are
asked to send money to. Lexon will allow to craft more bespoke
agreements, better suited to an individual project than the
cookie cutter contracts that we are used to today.

Domains of Application

BEST BEFORE APRIL 2020 137 LEXON

Mutual and Retail Insurance

The reason you cannot insure your party against weather events
today is that this type of insurance is not commercially interest-
ing for insurers. Weather insurance is difficult to get even for
farmers who depend on the weather for their livelihoods. Lexon
should help to create mutual insurances that work with trusted
oracles – e.g. to decide about payouts for bad weather. This
has always been a blockchain mainstay example but Lexon
takes out the intransparency of current smart contract lan-
guages to include non-nerds. This can allow for costs to come
down and a critical mass of participants in the market to be
reached so that either mutual insurance becomes viable or in-
surance companies come on board. Lexon will also make the
required legal research many times easier: to find out what le-
gal form would be required for such an insurance. And Lexon
would allow for readability of the charta of a DAO that might
run the insurance pool, making it a real legal person.

Information Sale and Sharing

The future of blockchains might be the sale of information. The
most important functionality of smart contracts might soon be
to grant or refuse access to well defined portions of data. This
is not possible today with most platforms as they cannot store
secrets or secret keys. But this is changing and, in the future,
the 'new oil' should become the main digital good that block-
chains manage and provide access to, for a fee. Lexon will en-
able lawmakers to chime in – using ex-ante regulation – to pro-
tect consumers and will allow customers to express their pre-
cise interest and limits. The tangle of conditions that can be
expected to be articulated by consumers, will probably be
much safer and much clearer when programmed in Lexon –
which has the right abstraction level – than any other language.

Domains of Application

LEXON 138 0.3.5.9.3

Digital Asset Markets

A major motivation to create Lexon was to 'synchronize the
shift of possession and ownership.' The thinking goes that the
magic of blockchain tech is, that programs can transfer money
in an unstoppable way. The one recourse though that anyone
always has is to sue. The best dis-incentive against someone
going to court for corrupt motives will be that a smart contract
is human-readable, for the judge to find out immediately that
what happened on the chain was exactly as agreed. This basic
premise holds for all valuables that may change hands on a
blockchain: the trade will be safer when the smart contracts be-
hind it can be presented to a judge. It will reduce the likeliness
to be sued. All other advantages for non-programmers of
course also apply.

L

The diversity of uses is apparent. The accuracy of Lexon's ab-
straction process provides for the breadth of its applicability.

The expectation is that a multitude of relevant application
domains will be added to this list. This is because Lexon's AST
comes so close to expressing the actual meaning of a contract,
while contracts are used and looked at in so many different
ways. All of which Lexon captures – or rather: leaves intact.

In the end, Lexon improves any blockchain use case and
might help to get it into production. It can improve many legal
procedures. And it may just as well be used for programs that
have nothing to do with any of the above but will benefit from
readability.

 139

MOTIVATION
To give an idea where we might be headed, here is a personal
account on how Lexon came about.

Lexon started as an idea about how to make smart con-
tracts safer to use. The magic of blockchains is that programs
send money, directly. If you saw the backends of mobile pay-
ment you'd appreciate what a transformative power that is.
One of the early visions was that of IoT devices becoming eco-
nomically autonomous. But this change of possession could still
be challenged in court. The argument would go that a smart
contract didn't work as expected. This would be difficult to dis-
prove, and potentially costly every single time.

But if smart contracts could be readable by a judge, the
refutation of frivolous claims would be so much easier, it would
nearly eliminate any incentive to go to court with a made-up
claim. By means of 'human-readability' Lexon was to add the
reliable change of ownership to go with the change of posses-
sion that blockchains facilitate.

When I wrote the book on Ethereum, I wrote a paragraph
about the idea of Ethereum smart contracts in natural English,
fully convinced that projects existed that worked on it. The idea
was in the air in 2016 and it seemed just a matter of time. But I
found out I was wrong, no one was working on it, I had to revise
that paragraph. I started asking around and learned that de-
spite the fact that numerous languages had been created for
Ethereum at this point, the vision of human-readability was
seen as a challenge of a different magnitude. I found it tempt-
ing because I had created a complete suite of tools for a do-
main specific language (DSL) and virtual machine with unusual
features before, for the insurance industry. There was no ques-
tion that everyone loved the idea and it would have viral

Motivation

LEXON 140 0.3.5.9.3

potential. It would be a really good thing to have, it just wasn't
happening. This started to look like it was on me.

I used Christmas 2016 to sit down and prove out the basic
premise, coming up with a first working demo that could com-
pile a minimal 'human-readable' example contract. I started to
look for partners and late summer the next year had the oppor-
tunity to find feedback from Oliver Goodenough and Carla
Reyes for the first Lexon whitepaper. My closest confidant from
the start was TJ Saw, a lawyer and entrepreneur who had prac-
ticed trade law and created software to find loopholes in (nat-
ural language) contracts, together with Gavin Wood, the co-
founder of Ethereum. On the technical side, MIT's Thomas
Hardjono played an important role for me, a crypto and open
source veteran who had shepherded the Kerberos Consortium,
a crucial contribution to secure communication.

In 2018 the formation of the Lexon Foundation was an-
nounced in Davos, angel money raised and the core of the
Lexon community assembled, 70 experts across the different
fields that the vision touched upon. Over the course of 2019
we created Lexon 0.2 and collected feedback at conferences
all over the world. By that year the design had evolved to some-
thing better than I had expected to be possible, thanks to the
push from Open Source legend Brian Fox. I had not thought
that readability without any learning curve, without any prepa-
rational study of programming really, would be possible. The
price for it, lower writeability, looked forbidding. But it turned
out to be the fiery dust that made Lexon come into its own.

It also became apparent that half of the work to make
Lexon fly would be communication. It was just too far out; the
vision communicates in seconds, but people would not neces-
sarily dare to trust their intuition about possibilities even after
seeing a live demo. And while there was a good deal of alche-
mistic creativity required in the design of the language, the ma-
terial deliverable turned out to be the cross-sectional commu-
nication with lawyers and business people to find, word by

Motivation

BEST BEFORE APRIL 2020 141 LEXON

word, what it would take to make the language feel at home to
them.

It was exceedingly difficult to get guidance out of lawyers,
and almost impossible without specific examples as starting
point of a discussion. Lexon evolved deploying the Stone
method to the extreme: programming something that might
hit it, showing it to people and see how they react, then going
back and iterate to get closer the next time. Unsurprisingly, I
had to unlearn my take on code as a life-long programmer. It
was a revelation to discover how different non-coders intuit the
meaning of code, how right they can be, how off, how blind-
folded by arbitrary convention we programmers. Of course, the
goal was always to make Lexon look and feel simple, and we
are succeeding. Lexon will hopefully appear as an 'obvious' de-
sign – and never betray how incredibly hard it was to source
direction.

In mid 2019 it became clear that Lexon was unique be-
yond the narrow confines of the blockchain world. I had until
that point discouraged everyone from even exploring this
question. But now there is demand for an off-chain version of
Lexon that could process Lexon code trust-fully, e.g. for pro-
cessing contracts in-house. It also turned out that there is inter-
est in Lexon for its readability alone, independent of legal ques-
tions, e.g. for communities creating DAOs. The course was held
steady in 2019 to avoid death by feature creep but plans for
2020 were adapted accordingly.

Throughout, there is the question, what Lexon is. How it
achieves what it does, and also to what extent it is actually new.
There were genuine inventions made to get where we are: e.g.
one insight is that non-programmers often do understand ab-
stractions perfectly well, but only un-nested and only without
the burden of the overhead of giving the principle a name: in-
stead staying with exactly one level of abstraction and concrete
examples. Lexon yields to this finding in multiple aspects and
that is one factor that makes it different from other

Motivation

LEXON 142 0.3.5.9.3

programming languages. It's a simple limitation, but the con-
sequences are substantial.

On the other hand, Lexon is also based on advanced pro-
gramming techniques that are not familiar to the majority of
programmers, which has resulted into some voicing doubts
that it could actually work, even after being shown real, work-
ing code.116 The prime example here is how Lexon employs
pattern matching that is borrowed from functional languages.
Lexon mixes higher-order logic in, to, in a very pragmatic way,
attach itself to the idiosyncrasies of smart contracts and allow
for code that reads more like natural prose – in the instance, to
be able to introduce names without any context. No magic
there, no rocket science either, it's just different, serves the pur-
pose – and irritates programmers.

And so, from the start, there has been enthusiasm for the
vision of human-readable smart contracts by a select few, who
carried the development. And the circle of pioneers who love
it is widening, some have tried their hand at the idea them-
selves before finding Lexon. Mind-bending moments of in-
sights happen thanks to experts in the fields giving their view
and support.

But generally, neither lawyers nor programmers develop
a crush on Lexon at first sight. In the real world, seasoned prac-
titioners of law have no time for claims of disruption of their
3,000-year-old profession. Worse, lawyers are just no fans of
stuff like programming. There are jokes amongst them, I
learned, that essentially go 'Oh, sure, I too had no talent for
STEM but still wanted to go to university. So, chose law.' This,
self-deprecating humor does not instill courage to try cod-
ing.117

116 Most devs crack a sibylline smile when they see Lexon for the first time.
117 Luka Müller, whose lawfirm guided Ethereum to regulatory safety in Swit-
zerland, laughed when he first saw Lexon and said, "yes, lawyers won't like
it, but their bosses will make them use it."

Motivation

BEST BEFORE APRIL 2020 143 LEXON

There are also enough conservative programmers who
don't appreciate anything that doesn't look like ALGOL and
don't program on weekends or at night. Lexon is not the first
and will not be the last programming language to be criticized
simply for looking unusual. Ironically, by lowering the threshold
for everyone else, Lexon raises it for programmers. It's like
learning a language that is similar to one you know: there is a
constant danger of making wrong assumptions.

That's why we are working to prove Lexon top-down. A
big bang event will be necessary where a flagship project using
Lexon will make the world take note and start thinking about
what might just have become possible. This will make people
more confident to give it a shot themselves and maybe pro-
posed it as an option at their corporate home. To that end, we
are working with deciders and C-level management to realize
reference implementations of big global brands using Lexon.
At the same time, we are going into the universities to help to
create the first Lexon curriculums to reach the next generation
of lawyers. To train the first legal engineers.

L

Consider deploying your first digital contract now if you have
not already done so, at http://demo.lexon.tech. Use an exam-
ple, try changing it a little bit right in your browser, deploy and
manage it, to get a first-hand impression of how accessible
blockchain smart contracts can be.

Hopefully this will be just a beginning and we'll see you around.

It would be awesome to hear from you with feedback to
lexon.book@gmail.com or if you asked your questions on the
mailing list that you can join at http://list.lexon.tech.

Thank you

 145

APPENDIX

 147

APPENDIX I:
RESOURCES

Please get in touch, break things, let us know.

Feedback lexon.book@gmail.com

Updates of this list www.lexon.tech/resources

Web Site www.lexon.tech

Tutorial www.lexon.tech/tutorial

Docs & Reference www.lexon.tech/docs

Mailing List list.lexon.tech

Book amazon.com/dp/169774768X

 ISBN 978-1697747683

Bible amazon.com/dp/1656262665

 ISBN 978-1656262660

Online Editor demo.lexon.tech

Aeternity Editor fire.lexon.tech (lexon-enabled)

Ethereum Editor remix.ethereum.org (lexon-enabled)

Lexon Compiler gitlab.com/lexon-foundation/lexon-rust

WASM Build npmjs.com/package/lexon-wasm

 149

APPENDIX II:
BLOCKCHAINS

& SMART
CONTRACTS

If you would like to read about the very basic of blockchains,
this is for you. Lexon is not only for blockchain and this infor-
mation is not required knowledge to understand this book.

Blockchains bring a new dimension to information technology:
data that cannot be forged, and therefore, can be trusted.118
Smart contracts are simply programs that process exclusively
this trustable data and accordingly, their results can likewise be
fully trusted. That they were called 'smart contracts' was not
initially meant in the legal sense. But because they can transfer
cryptocurrency, they were found to look quite like a sequence
of steps to be followed to eventually have money flowing: in
other words, much like a contract.

Every single piece of information on a blockchain is
signed by who put it into the system. And similar to how a hu-
man community works – as a network of individual brains –
every participating computer in a blockchain has a copy of

118 Ironically dubbed 'trust-less' by the full-on nerd logic that the data can
be relied upon – thanks to cryptography – without having to trust anyone.

Appendix II: Blockchains & Smart Contracts

LEXON 150 0.3.5.9.3

everything in the chain. It can therefore independently verify
any claim anyone might make about the chain's data. And
that's all really.

This is quite an inefficient way to store and process data,
the most inefficient way thinkable actually. It also suffers from
the trash-in trash-out problem: if someone signs a lie, well the
lie is in the system. But because of the signature there can be
consequences. At least in a blockchain, there are no anony-
mous lies. This makes for a huge difference.

Because data in a blockchain can also not be duplicated
– everyone else would notice it immediately because everyone
holds full copies – blockchains can support digital cash. Before
the advent of Bitcoin this was thought to be impossible. It
seemed that everything digital could always be copied. But if
everyone has a complete copy, you can't just print yourself
more digital coins without the others noticing. That is, you
could but consensus means that everyone else would simply
stop talking to you. No one would take your fake money. Or
even your real coins anymore for that matter.

This is how programs in the blockchain – smart contracts
– can send money around. Directly, without needing to call Pay-
Pal or your bank for it. Because all of a sudden, copy-proofed
bits and bytes can be used as cash. This is pretty magical. It can
and is used in business and works fast and flawlessly. The rea-
son you might not be hearing much about it is that no-one re-
ally earns much from this. It's the basic blockchain functionality.

But it's a game-changing, new super power for programs.
Computational Law was not originally concerned with it be-
cause no-one saw this coming. The vision that law and contracts
should be computable long pre-dated blockchains. But every-
one is sure looking to Computational Law now to give context
and help to understand what smart contracts are.

Blockchains are the result of 30 years of research originat-
ing with the Cypherpunk movement in the 1980ies. A move-
ment that was about open rebellion against some laws, utilizing

Appendix II: Blockchains & Smart Contracts

BEST BEFORE APRIL 2020 151 LEXON

the 'weapon' of writing code. A main motivation to invent the
blockchain was concern about the coming surveillance capital-
ism that we see in full bloom now. The Cypherpunks under-
stood early that what was needed was a decentralized – and
ideally private – way to transact. Because the centralized nature
of prevailing system architectures is what makes surveillance so
cheap.

David Chaum started to write about it in the year 1984,
blockchains took it to the next level 25 years later. Bitcoin of
course became an Eldorado of knights of fortune and specula-
tors, and the ICO craze of 2017 saw untold pyramid schemes
bagging millions. But the original spirit of the movement is cap-
tured in this 1993 Cypherpunk Manifesto:

 "privacy in an open society requires anonymous
transaction systems. Until now, cash has been the
primary such system. An anonymous transaction sys-
tem is not a secret transaction system. An anony-
mous system empowers individuals to reveal their
identity when desired and only when desired; this is
the essence of privacy.

Privacy in an open society also requires cryp-
tography. If I say something, I want it heard only by
those for whom I intend it. If the content of my
speech is available to the world, I have no privacy.
To encrypt is to indicate the desire for privacy, and
to encrypt with weak cryptography is to indicate not
too much desire for privacy. Furthermore, to reveal
one's identity with assurance when the default is an-
onymity requires the cryptographic signature.

We cannot expect governments, corporations,
or other large, faceless organizations to grant us pri-
vacy out of their beneficence. It is to their advantage
to speak of us, and we should expect that they will
speak."

Eric Hughes, 1993

 153

APPENDIX III:
COMPUTER

LANGUAGES
BASED ON

NATURAL
LANGUAGE

Bringing natural language into programming is a notion that
existed almost from the beginning. But all prior attempts at hu-
man-readability, from FLOW-MATIC to the Applescript, focus
on a more technical level as domain of the conversation. Lexon
focuses on a higher level, the business logic, and strives to
leave all structural artifacts behind.

But note the longevity of most languages in this list.

Also note that Structured English and Pseudo-Code are
more of an idea than clear rule sets and are not used to write
actual programs. That is why they are not listed below.

Appendix III: Computer Languages Based on Natural Language

LEXON 154 0.3.5.9.3

FLOW-MATIC
Grace Hopper, Remington Rand, 1955 (discontinued)

https://archive.computerhistory.org/resources/text/Reming-
ton_Rand/Univac.Flowmatic.1957.102646140.pdf

 (0) INPUT INVENTORY FILE-A PRICE FILE-B ;

OUTPUT PRICED-INV FILE-C UNPRICED-INV FILE-D ;

HSP D .

 (1) COMPARE PRODUCT-NO (A) WITH PRODUCT-NO (B) ;

IF GREATER GO TO OPERATION 10 ;

IF EQUAL GO TO OPERATION 5 ;

OTHERWISE GO TO OPERATION 2 .

 (2) TRANSFER A TO D .

 (3) WRITE-ITEM D .

 (4) JUMP TO OPERATION 8 .

 (5) TRANSFER A TO C .

 (6) MOVE UNIT-PRICE (B) TO UNIT-PRICE (C) .

 (7) WRITE-ITEM C .

 (8) READ-ITEM A ;

IF END OF DATA GO TO OPERATION 14 .

 (9) JUMP TO OPERATION 1 .

(10) READ-ITEM B ;

IF END OF DATA GO TO OPERATION 12 .

(11) JUMP TO OPERATION 1 .

(12) SET OPERATION 9 TO GO TO OPERATION 2 .

(13) JUMP TO OPERATION 2 .

(14) TEST PRODUCT-NO (B) AGAINST ; IF EQUAL GO TO

OPERATION 16 ; OTHERWISE GO TO OPERATION 15 .

(15) REWIND B .

(16) CLOSE-OUT FILES C ; D .

(17) STOP . (END)

Fig 32 – FLOW-MATIC program code example

FLOW-MATIC was the first program language to use English
words. It is the human-readable exponent of the 2nd generation
of computer languages, which were usually content with look-
ing like a jumble of three-letter abbreviations.

Appendix III: Computer Languages Based on Natural Language

BEST BEFORE APRIL 2020 155 LEXON

Grace Hopper described how they had to convince peo-
ple of the advantage of human-readability119 and how they
chose the imperative form for verbs to be able to have a Ger-
man version of FLOW-MATIC. It's not quite clear if this was a
joke, the seemed to really want to go multi-lingual.

This language is where COBOL inherited its English-lean-
ing roots from. The first COBOL compiler was written in FLOW-
MATIC. COBOL, being of the next generation of program lan-
guages – the 3rd – soon replaced it.

Note the beauty of line 12. FLOW-MATIC is so close to
machine code that it unabashedly modifies itself. This was de
rigueur, as memory in the 50ies was incredibly scarce and pro-
grams could be made shorter by modifying themselves in place.

The advantage that FLOW-MATIC achieved over what ex-
isted before was immense, as in the 50ies programmers still
operated with machine codes. Hopper described her own
wrestling with octal numbers as a strong motivation to find a
better way. Her arguments for 'B-0,' as she preferred to call
FLOW-MATIC, were exactly the same that we are making for
Lexon. But as the source example above betrays, the subject
matter of FLOW-MATIC were still cpu registers, files, atomic
operations and the program pointer. Hopper reasoned that
FLOW-MATIC was not actually a language:

“The fact that we could substitute those French
and English words means that it was never anything
but a code. It was not a true language.”

Grace Hopper120

119 “We finally convinced the Marketing Department that this could work. [..]
to try and sell to the general public the idea of writing data processing pro-
grams in English statements. It was a long, torturous, and difficult job to get
that concept accepted, because it was of course obvious that computers
couldn’t understand plain English, which made life very, very difficult.” – G.
Hopper, https://dl.acm.org/citation.cfm?id=1198341
120 G. Hopper, ibid.

Appendix III: Computer Languages Based on Natural Language

LEXON 156 0.3.5.9.3

COBOL
CODASYL, 1959

IDENTIFICATION DIVISION.
PROGRAM-ID. CONDITIONALS.

DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 NUM1 PIC 9(9).

PROCEDURE DIVISION.

 MOVE 25 TO NUM1.

 EVALUATE TRUE

 WHEN NUM1 < 2

 DISPLAY 'NUM1 LESS THAN 2'
 WHEN NUM1 < 19

 DISPLAY 'NUM1 LESS THAN 19'

 WHEN NUM1 < 1000
 DISPLAY 'NUM1 LESS THAN 1000'

 END-EVALUATE.
 STOP RUN.

COBOL is one of the very first 3rd generation languages, prob-
ably the third, created in the late 50ies and unbelievably, still
around.

It was designed by committee with no computer scientists
invited. They were left out because some people felt the ivory
tower guys were intentionally dragging their feet on coming up
with a language that would help standardize business program-
ming. This didn't go down will in the academic community and
COBOL was dissed hard from the very first moment.121

Yet by the 70ies COBOL was the most widely used pro-
gramming language in the world. Together with FORTRAN it is
also the eldest language still in use: crazy 60 years now.

121 COBOL was not even defined using the new and fashionable BNF.

Appendix III: Computer Languages Based on Natural Language

BEST BEFORE APRIL 2020 157 LEXON

Its English-like syntax was intended to make it self-docu-
menting and easy to learn. Its optics have many detractors but
there are also vocal defenders of COBOL who claim that it is
still around because the closeness to English make it well main-
tainable. The criticism is that this also makes it very verbose.

COBOL has 300 reserved words and has a pronounced
document structure of divisions, sections, paragraphs and sen-
tences. Despite the similarity, the terms are not used in the
same way as with Lexon.

COBOL was heavily influenced by its direct predecessor
FLOW-MATIC and being a child of the 50ies its optics are
clearly that of a more or less cryptic-looking program flow de-
scription, not anywhere near to spoken English. Despite being
standardized, COBOL has 300 dialects. It is still running on
mainframe computers of big corporations today and seems to
be very hard to replace – not that there would not be better
ways to do things by now but it would ostensibly be very costly
to switch. A major maintenance problem today is that COBOL
programmers have started to die out. Literally.

The badmouthing of COBOL never stopped. Just say
'COBOL' and programmers trip over each other laughing. Then
ask if they know even one line of COBOL. Pragmatic initiatives
can be perceived as very offensive.

Appendix III: Computer Languages Based on Natural Language

LEXON 158 0.3.5.9.3

SQL
Chamberlin and Boyce, IBM, 1974

http://citeseerx.ist.psu.edu/viewdoc/down-
load?doi=10.1.1.129.6517&rep=rep1&type=pdf

SELECT isbn,

 title,
 price,

 price * 0.06 AS sales_tax

FROM Book
WHERE price < (SELECT AVG(price) FROM Book)
ORDER BY title;

Fig 33 – SQL program code example

SQL is based on relational algebra and was made to describe
datasets to be retrieved from a Relational Database like Oracle,
DB2, or mySQL. SQL has a voluminous standard, but there are
around 20 relevant dialects in the industry.

SQL is exclusively specialized for managing and accessing
databases and since decades, the global top dog for it. Be-
cause of this, SQL is embedded in many other languages in
more or less direct ways: even systems otherwise written in a
3rd generation language will usually query data from a Rela-
tional Database by using SQL commands that are embedded
in the code in more or less elegant fashion. Usually horribly un-
elegant actually. But that shows how SQL is regarded as indis-
pensable for the task of accessing a database.

SQL as a language is subdivided into several elements,
including clauses, expressions, predicates, queries and state-
ments. It can be described as super set of a number of special-
ized sub languages that deal in data definition, querying, con-
trolling and manipulation, respectively. It is mostly a declarative
language (4th generation language) as it describes what is
wanted while leaving open how it should be found. It

Appendix III: Computer Languages Based on Natural Language

BEST BEFORE APRIL 2020 159 LEXON

incorporates the typical 3rd generation elements of procedural
programming though.

As can be seen in the example above, it is in fact possible
to intuit the meaning of simple SQL code. This deteriorates
quickly with more complex queries though, which need a very
mathematical mind to comprehend.

In practice, middle management is articulating queries in
SQL that are then checked and optimized by programmers to
make sure that the queries are written in a performance-opti-
mized way that will create as little load on the database system
as possible.

Further underlining how the language SQL has become
synonymous with the entire concept of Relational Databases, a
wave of non-relational databases that emerged from 2009 was
called "NoSQL" databases. In reality they were simpler data
stores mostly tailored to the needs of web pages, shedding
overhead of Relational Databases to gain performance and ro-
bustness. Some even kept SQL as their language. But because
a database without SQL had become unthinkable by the earli-
est 21st century, "NoSQL" was the best way to express the ad-
vent of a different technological approach.

However, the resounding success of this kind-of some-
what-human-readable language reminds of the longevity of
COBOL. They are both examples of how natural language-in-
spired computer languages can be wildly successful.

Appendix III: Computer Languages Based on Natural Language

LEXON 160 0.3.5.9.3

HyperTalk
Dan Winkler, Apple, 1987 (discontinued)

http://hypercard.org/HyperTalk%20Reference%202.4.pdf

 on mouseDown

 answer file "Please select a text file to open."

 if it is empty then exit mouseDown

 put it into filePath

 if there is a file filePath then

 open file filePath

 read from file filePath until return

 put it into cd fld "some field"

 close file filePath

 set the textStyle of character 1 to 10 of

 card field "some field" to bold

 end if

 end mouseDown

HyperTalk was created for a forerunner of the web, the (offline)
HyperCard software development system of early Apple com-
puters.

It had an English-leaning vocabulary combined with a
grammar modelled in the image of the procedural program-
ming paragon Pascal.122 Notably, it makes use of the pronoun
"it" in a natural way, modelling one of the most demanding
aspects of human language.123

HyperTalk was the first of the xTalk family of languages
and had many successful heirs, among them LiveCode’s Tran-
script, Flash’s Actionscript, Applescript and Lingo.

122 Pascal is a very clean 1970 language that was proposed to improve pro-
gramming practices. It was used a lot in universities to teach programming
and is a classic example of a 3rd generation language.
123 Lexon has elements like this, in an even trickier way. They can be imple-
mented because of the low level of Lexon's foundation. Meng Wong of the
Legalese project remarked on that with 'envy' when first inspecting Lexon.

Appendix III: Computer Languages Based on Natural Language

BEST BEFORE APRIL 2020 161 LEXON

Applescript
Apple, 1993

tell application "Finder"
 set passAns to "app123"

 set userAns to "John"

 if the text returned of (display dialog
"Username" default answer "") is userAns then

 display dialog "Correct" buttons

 {"Continue"} default button 1
 if the text returned of

 (display dialog "Username : John" &

 return & "Password" default answer
 "" buttons {"Continue"} default

 button 1 with hidden answer) is

 passAns then
 display dialog "Access granted"

 buttons {"OK"} default button 1

 else
 display dialog "Incorrect password"

 buttons {"OK"} default button 1

 end if
 else

 display dialog "Incorrect username"

 buttons {"OK"} default button 1
 end if
end tell

Applescript is made to automate interaction between applica-
tions on the Mac. It uses the fact that Mac applications publish
"dictionaries" of addressable objects and operations.

Applescript freely mixes procedural, object oriented and
natural language. It has a quite 'natural' grammar that has the
basic structure of an unnamed subject 'telling' applications
what to do. But the complexity of parametrizing what that is,
soon drowns out the initial similarity to spoken English.

 163

APPENDIX IV:
CONSTRUCTED

HUMAN
LANGUAGES

A day after receiving a Lexon live demo, Gavin Wood – a driv-
ing force behind Ethereum, initiator of Solidity and founder and
inventor of Polkadot – proposed to create a smart contract lan-
guage based on the artificial human language Loglan.

That's missing the point of Lexon, which allows for read-
ability without any preparation. Learning Loglan to be able to
read smart contracts would be more involved than learning So-
lidity. The intuitive similarity lies in how Loglan has a regular
grammar, unlike any natural language but very much like Lexon.
And how Loglan should be able to express anything under the
sun, as opposed to the pure programming language Solidity.

But a fundamental misunderstanding might arise regard-
ing in what sense Lexon and constructed human languages, re-
spectively, are regular. Lexon's grammar and restrictions are
very much informed by programming paradigms, things like
variable scope, control flow, matching, and object orientation.
Constructed human languages, however, are often 'merely' fo-
cused on creating simpler, regular grammars that suit the pur-
poses of a human speech, or thought. They do not bring the

Appendix IV: Constructed Human Languages

LEXON 164 0.3.5.9.3

'mapping' of concepts between language and programming
that Lexon, as transparently as possible, proposes.

It may make sense to contrast Lexon with previous at-
tempts at creating new human languages, to get a better grasp
of Lexon's place in this wider context and what is new about it.
David Bovil reasons that Lexon is an exponent of the new class
of performative languages: communication that does not
merely inform or suggest but directly causes things to happen.
As such it should be seen not only in the context of program-
ming languages.

Constructed natural languages were the forerunners of
programming languages that try to achieve semblance of hu-
man speech. Hundreds of languages have been invented over
time. The motivation has often been given as a deeply political
one, but it is fair to assume that a strong linguistic passion
drove all projects and communities. A common claim used to
be the role Auxiliary Languages might have to promote world
peace (Volapük, Esperanto, Basic English), by making people
able to talk with each other. Another is the exploration of the
relationship between language and thought (Newspeak and
Loglan). George Orwell in particular was outspoken about how
eliminating ambiguity would be a step down the road to tyr-
anny. Through a role in business, as language for contracts,
Lexon might influence natural language at some point. Orwell's
warning deserves attention.

Another point of interest is how communities developing
around language projects struggled with questions of consen-
sus about contributions and copyright. Volapük and Loglan suf-
fered heavily from it. Of the following list, only Esperanto really
is alive.

Appendix IV: Constructed Human Languages

BEST BEFORE APRIL 2020 165 LEXON

Volapük
Martin Schleyer, 1879

http://volapük.com

O Fat obas, kel binol in süls,
paisaludomöz nem ola!
Kömomöd monargän ola!
Jenomöz vil olik, äs in sül, i su tal!124

During a time when English had not achieved its prevalence,
Volapük was the first successful artificial language designed to
facilitate communication as a second language. It was not the
first time the idea for a universal language was floated and not
the first that was constructed. But it kicked off a wave.

Despite what the umlaut in its name suggests, Volapük's
vocabulary was mostly derived from English, with some French
and German stems mixed in. Schleyer aspired for the word or-
igins to be brief and rather not recognizable so as to not alien-
ate speakers of other nations. Volapük, for example, comes
from 'world speak.' But the use of umlauts exposed it to the
ridicule of English speakers.125

Schleyer claimed that God had instructed him to create
an international language, which suggests some messianic
drive to create and 'evangelize' the vision. Hundreds of Vola-
pükist clubs existed around the globe in the 1880ies and one
million fans of the language were claimed at that time. But
schisms126 over the direction of further development led to

124 The Lord's Prayer in Schleyer's 1880 rendition – https://en.wikipe-
dia.org/wiki/Volap%C3%BCk
125 https://www.berfrois.com/2012/12/truth-beauty-volapyk-arika-okrent
126 https://en.wikipedia.org/wiki/International_Volap%C3%BCk_Academy

Appendix IV: Constructed Human Languages

LEXON 166 0.3.5.9.3

Volapük's rapid decline already at the end of the century when
most students switched to the easier Esperanto.

Volapük inspired numerous other artificial languages,
some very similar, some with no connection, and almost all for-
gotten. Today, Volapük is estimated to have 20 speakers glob-
ally. It still has its own Wikipedia 127 and academy. 128 But
Schleyer no doubt succeeded in starting a movement.

“In August 1889 the third convention was held
in Paris. About two hundred people from many coun-
tries attended. And, unlike in the first two conven-
tions, people spoke only Volapük. For the first time
in the history of mankind ... an international conven-
tion spoke an international language.”

André Cherpillod

127 https://vo.wikipedia.org
128 http://volapük.com

Appendix IV: Constructed Human Languages

BEST BEFORE APRIL 2020 167 LEXON

Esperanto
Ludwik L. Zamenhof, 1887

http://esperanto.org

Patro nia, kiu estas en la ĉielo,
sanktigata estu Via nomo.
Venu Via regno.
Fariĝu Via volo
kiel en la ĉielo, tiel ankaŭ sur la tero.

Esperanto is the most successful constructed human language
with an estimated 100,000 speakers globally, 1 million people
in the know and even around 1,000 native speakers today who
learnt it from childhood.

Esperanto's vocabulary and grammar are based mostly
on Latin, but it incorporates stems from other languages when
they were found to be more popular across different languages.
As a result, it is exceedingly simple to learn for someone versed
in one Southern and one Northern European language. Espe-
ranto is completely regular in its word endings, e.g. -o signify-
ing nouns, -as verbs in present tense, -u imperative, -a adjec-
tives. These choices give it a Mediterranean sound.

Esperanto, in Esperanto, means 'one who hopes,' which
expresses the pacifistic spirit it was born from. Zamenhof's
hope was that it could help prevent ghettoization, racism and
war. After Esperantists were initially indexed and imprisoned
by the thousands under Stalin, Esperanto was later supported
by the states of the Eastern Block as alternative to English. It
remains an optional high school subject in Hungry and can be
studied at the university in Poland. A chair exists at the univer-
sity of Amsterdam and the World Esperanto Association sits in
Rotterdam with an office in the UN building in New York.

Appendix IV: Constructed Human Languages

LEXON 168 0.3.5.9.3

To facilitate exchange across borders, Esperantists have
offered each other free accommodation since long before
couch surfing. Today, the initial purpose of the language has
been largely abandoned, acknowledging that English has be-
come the world's lingua franca, and Esperantist culture has be-
come a thing in itself.

“Diversity of languages is the first, or at least
the most influential, basis for the separation of the
human family into groups of enemies.”

L. L. Zamenhof

Appendix IV: Constructed Human Languages

BEST BEFORE APRIL 2020 169 LEXON

Basic English
Charles K. Odgen, 1930

http://www.basic-english.org

Our Heavenly Father,
may your name be glorified.
May your kingdom come;
may your will be done
on earth as it is in heaven.

Basic English intended to pare down English to a viable core,
learnable in a mere 60 hours, that would still sound 'normal' to
a native English speaker. It was proposed as auxiliary world lan-
guage a hundred years ago and was promoted as tool for world
peace in the 1950ies. It serves as inspiration and learning tool
today.

Basic English is a proper 'controlled language,' like Lexon,
reducing the richness of English to a small and regular subset.
The size of vocabulary deemed sufficient was found to be a
mere 850 words,129 a list that is still used internationally for
teaching English. The Simple English Wikipedia130 is based on
the concept of Basic English but uses it only as a guideline that
is not strictly enforced. It turned out to be quite difficult for
teachers of Basic English to learn which rules and words were
included and which not. A similar situation exists with Lexon
but it might pose less of a challenge because Lexon is more
restricted.

“What the World needs most is about 1,000
more dead languages—and one more alive.”

Charles K. Odgen

129 https://en.wiktionary.org/wiki/Appendix:Basic_English_word_list
130 https://simple.wikipedia.org

Appendix IV: Constructed Human Languages

LEXON 170 0.3.5.9.3

Newspeak
George Orwell, 1949

http://orwell.ru/library/novels/1984/english/en_app131

Eat, drink,
and be merry, for
tomorrow we die.

Newspeak is actually a fantasy language and was never meant
to be used, but in an unexpected way it provides a link between
Basic English and Loglan.

George Orwell had promoted Basic English in the 1940ies
before getting vocal about the negative consequences of a
dumbed down language for the intellectual and political dis-
course.132 His famous dystopian novel 1984 closes with a de-
scription of Newspeak, the language of the socialist dictator-
ship featured in 1984.

Newspeak in Orwell's mind was not "Freedom is Slavery"
or using "Enhanced Interrogation Techniques" as euphemism
for torture. In his novel, he described Newspeak as designed
by the dictatorship of Big Brother to make critical thought im-
possible by establishing as every day and only language a much
reduced, strictly regular, and less ambiguous language.

Orwell was particularly critical of the attempt to eliminate
double meaning, which he argued was the path to shallow,
non-sensical, manipulative hollowness.

Newspeak was both a critique of the Soviet jargon of the
time that Orwell had just fallen out of love with and the

131 Note that the link to the free online copy of Orwell's original description
of Newspeak from 1949 goes to a Russian domain hosted in Texas.
132 Politics and the English Language, G. Orwell 1946: https://www.or-
well.ru/library/essays/politics/english/e_polit/

Appendix IV: Constructed Human Languages

BEST BEFORE APRIL 2020 171 LEXON

contemporary use of English that he felt was becoming similarly
appalling. He mixed artistic playfulness and political satire into
the definition of Newspeak so that the language itself is prob-
ably less useful than Klingon and no one ever tried becoming
fluent in it.

Implicitly, Orwell firmly subscribed to the idea that lan-
guage shapes thought. So much so that restricting language
would allow to restrict thought. His point was to highlight what
we stand to lose if we let language be dictated to us, by force,
fashion or best intentions.

“Modern English, especially written English, is
full of bad habits which spread by imitation and
which can be avoided if one is willing to take the nec-
essary trouble. If one gets rid of these habits one can
think more clearly, and to think clearly is a necessary
first step toward political regeneration”

George Orwell

Appendix IV: Constructed Human Languages

LEXON 172 0.3.5.9.3

Loglan
James C. Brown, 1955-88

http://loglan.org

Hoi Memio Farfu, ji vi le skatyhaa gu,
Eo ga nu sentydju ga letu namci.
I eo letu nu bragai fa fadkaa.
I eo lotu nu furmoi ga nu durzo vi la Ter,
ciuvi le skatyhaa.133

Loglan was made to be different from human languages, so as
to proof the hypothesis of Linguistic Relativity, which holds that
a different language should lead to different thoughts; that lan-
guage was in fact the 'fabric of thought' as Wilhelm von Hum-
boldt had proposed in 1820.

This take on language was ridiculed from the 1960ies
when the idea of a genetically anchored innate faculty to speak
became mainstream, from which Context-free Grammars and
BNF resulted: the universal way to describe computer lan-
guages. But Loglan, short for 'logical language,' was made to
find if people think more logically when thinking in a more log-
ically constructing language.

In order to not bring presuppositions into the thought
process, Loglan has no distinction between verbs, subjects and
objects, no notion of tense, numerus or gender. In this regard
it uncannily matches Newspeak. Loglan also tries to overcome
ambiguity. Its vocabulary was derived from the eight at the time
most-spoken languages of the world.

133 The Lord's Prayer https://math.boisestate.edu/~holmes/lo-
glan.org/(drafts%20-%20not%20part%20of%20loglan.org)/the-lords-
prayer.html

Appendix IV: Constructed Human Languages

BEST BEFORE APRIL 2020 173 LEXON

In Loglan, the meaning-carrying words require 'argu-
ments' in specific order. Through this, the order of words ac-
quires paramount importance, not unlike the way of listing the
arguments of a function call in classic programming languages.

Loglan is so regular that texts written in it can easily and
reliably be decomposed by a machine. Like for Lexon, grammar
descriptions134 exist that help to parse Loglan texts unambigu-
ously. But in the case of Loglan the definition of the language
does not result in an AST (pg. 61). The test that a computer can
parse it is nothing but an exercise for the sake of proving the
consistency of Loglan's grammar. Achieving the regularity of
being parseable is itself the mission. There is no next step.

In fact, to create a Lexon dialect of Loglan, it would have
to be restricted ('controlled'), like English is for Lexon, to 'map'
it to the logic of programming languages.

Loglan has been heavily criticized for being based on a
severely lacking understanding of 'logic,' not implementing
predicate logic correctly and being unintentionally biased to-
wards English in its choice of argument positions and meaning
of gerunds. Copyright claims by Brown lead to a schism of the
community that was healed only after his death.

But Loglan's vision has allure and it inspired many refer-
ences in fiction. Maybe unsurprisingly, it turned out difficult to
learn. It has dedicated scholars but probably no more than a
dozen speakers, and thinkers.

134 Proposed PEG file for Loglan as of 2019:
https://math.boisestate.edu/~holmes/loglan.org/holmes_stuff/loglan.py
PEG is an alternative to BNF and Holmes discusses the difference in
https://math.boisestate.edu/~holmes/loglan.org/holmes_stuff/fall2015lo-
glanreport.pdf

Appendix IV: Constructed Human Languages

LEXON 174 0.3.5.9.3

Attempto Controlled English (ACE)
Norbert E. Fuchs, 1995-2013

http://attempto.ifi.uzh.ch

A customer enters a card and a code.
If the code is valid then the ATM accepts the card.
The code is valid.
Does the ATM accept the card?

Attempto Controlled English (ACE) may be the closest to
Lexon. It sparked excitement in academia and in true Cypher-
punk spirit, the guys let code talk.135

Like Basic English and Lexon, ACE reads like normal Eng-
lish but is in fact based on a strict subset of rules.136 Like Lexon,
ACE allows to freely add words and define them in the process
of using them. ACE sentences are assertions of the form:

subject + verb + complements + adjuncts

Reaching beyond the purpose of Basic English or Loglan,
ACE is about the processing of what is written in ACE, i.e.
about what happens after the parsing. The major goal of ACE
is to allow to logically evaluate texts consisting of such sen-
tences, interpreted as first-order logic. Accordingly, it has elab-
orate rules about how sentences are composed into a text, de-
fining conjunction like 'and' and 'or' as would be expected,
while parsing existential and universal quantors137 out of the in-
dividual phrases.

135 ACE Parser (using Prolog, no less): https://github.com/Attempto/APE,
AceWiki engine: https://github.com/AceWiki/AceWiki
136 http://attempto.ifi.uzh.ch/site/docs/ace_nutshell.html
137 'at least for one X it is true that …' and 'it is true for all X that …'

Appendix IV: Constructed Human Languages

BEST BEFORE APRIL 2020 175 LEXON

The rules are pretty strict, and, like with Lexon – or legal
prose for that matter – the wooden tone of ACE texts betrays
them.

ACE then allows for queries: on the surface of it, plain
English questions that it can answer based on the statements
that came before. "Yes" for the example above, as the ACE
tooling can correctly connect the anaphoric reference "The
code" to the first sentence (sic).

ACE also allows for commands, of the form:

subject + "," + predicate + "!"

But they play a limited role within the framework of ACE.

This is where Lexon, being based on higher-order logic,
takes it further, from the description of the logic of a domain
to the mix of process description and data that is typical for
programs. ACE is made for knowledge presentation, which is
one half of programming. And while the essence of ACE texts
can be compiled to discourse representation structures (DRS) –
a representation of first-order logic – Lexon code is eventually
compiled to imperative execution instructions that describe
both the data and the process through which the data should
be manipulated: i.e. an entire program.

“Attempto ['I dare'] was the motto of Norbert
E. Fuchs when he started the Attempto project at the
University of Zurich in 1995, defying 'has been tried,
can't be done' statements of some big shots in the
field of computer linguistics that Norbert had asked
for advice.”138

L

138 http://attempto.ifi.uzh.ch

 177

APPENDIX V:
BUILDING FROM

SOURCE
This is for programmers who are interested in supporting the
development effort of the Lexon compiler.

Find the source and more details at this URL:139

https://gitlab.com/lexon-foundation/lexon-rust

Using the source code from the above repository, you can build
the Lexon compiler from scratch, to inspect it, amend it, and
contribute. It can help you to make Lexon usable on other OS-
ses than Linux and Mac. Because it is written in Rust, the Lexon
compiler is very portable and it should be possible to make it
run on just about any platform. It has a very small footprint.

The compiler can also run directly in a browser, on most
any device, at native speed, i.e. with the feel of an installed ap-
plication to it. The repository includes the wraps to translate
the compiler to WebAssembly (WASM). But this is not needed
to build, try and execute the compiler locally on your machine.

139 For more links and resources see pg. 147.

Appendix V: Building from Source

LEXON 178 0.3.5.9.3

This source code would also be the starting point for im-
plementing new natural languages or new blockchain targets.
Both is super fun and neither brutally time-consuming nor diffi-
cult to get to an experimental stage, if you know a bit of Rust.

The grammar for controlled English is found in the file
lexon/src/lexon.pest. The output for Solidity (for Ethereum)
is produced in lexon/src/solidity.rs. The output for Sophia
(for Aeternity) is produced in lexon/src/solidity.rs.

Compiler: Building & Running

Prerequisites

• curl
• git
• gcc
• rust nightly

Building

git clone https://gitlab.com/lexon-foundation/lexon-
rust.git
cd lexon-rust
cargo build

Running

cargo run example.lex

Appendix V: Building from Source

BEST BEFORE APRIL 2020 179 LEXON

Usage

lexon <lexon source file>
lexon <target format> <lexon source file>

Example

lexon --sophia example.lex

Options

<target format>:

 --pre pre-compiler output

 --guigen JSON data to drive the con-
tract manager

 --solidity program to deploy to the
Ethereum blockchain

 --sophia program to deploy to the
Aeternity blockchain

WASM Build
The compiler can be built into any web page using the WASM
build at npmjs.com/package/lexon-wasm.

npm install lexon-wasm

Source at: https://gitlab.com/lexon-foundation/lexon-wasm.

 181

FIGURES

Fig 1 – Lexon code example: Escrow ... 3
Fig 2 – Lexon digital contract example sentence 5
Fig 3 – Online Editor ... 17
Fig 4 – Escrow Example: Solidity Output ... 19
Fig 5 – Lexon Base Vocabulary (verbs and compound expressions) 32
Fig 6 – Lexon Sentence Rule ... 36
Fig 7 – Lexon Simple Document Rule ... 37
Fig 8 – Lexon Simple Document Rule (graphical) 37
Fig 9 – Lexon Complete Document Rules .. 38
Fig 10 – Lexon Complete Document Rules (graphical) 38
Fig 11 – Lexon Clause Rule ... 39
Fig 12 – Lexon Clause Rule (graphical) ... 39
Fig 13 – The first ever program proposal ... 71
Fig 14 – Binary program code example .. 76
Fig 15 – Structured program code example ... 77
Fig 16 – Prolog code example .. 78
Fig 17 – AST example from Wikipedia ... 91
Fig 18 – BASIC example program: print 1 + 2 ... 96
Fig 19 – AST for: print 1 + 2 .. 96
Fig 20 – example of machine language .. 97
Fig 21 – BASIC example program: print (1+2) ... 97
Fig 22 – LEXON example code: The Signer certifies the Data. 98
Fig 23 – AST for: “Signer” certifies “Data.” .. 98
Fig 24 – BASIC code example: IF a THEN b ELSE c 99
Fig 25 – AST for: if a then b else c ... 100
Fig 26 – same example in BASIC, Lisp and Lua. 101
Fig 27 – multi-lingual AST for: a := 1 + 2, print a 101
Fig 28 – Lexon AST for Escrow Example .. 104
Fig 29 – Solidity AST for a Similar Escrow Example 106
Fig 30 – Solidity AST for a Similar Escrow Example (Detail) 107
Fig 31 – From Context Free Grammar to Abstract Syntax Tree 110
Fig 32 – FLOW-MATIC program code example 154
Fig 33 – SQL program code example ... 158

AUTHOR
Henning is the founder and CEO of the Lexon Foundation, he
has been called many things and also a pioneer and thought
leader in the blockchain space.

Henning was the first technical architect for IBM's blockchain,
Hyperledger Fabric, wrote the first book on Ethereum,
conducted blockchain research for the European Commission
and architected the Diamond Blockchain for DeBeers as
Director for Blockchain at the Boston Consulting Group.

Henning ran into the Ethereum people in Berlin in 2014 while
working on his Bitcoin prediction market startup. He helped
debugging Ethereum race conditions for IBM and worked as
liaison between the Ethereum hackers and IBM developers.

Henning developed his first crypto product in 2001 and is a
long-time contributor to open source. His long experience as a
freelancer supplied him with useful knowledge about the real
world. He worked in mobile payment, distributed databases,
functional languages and computer language design: all areas
which figure heavily in blockchain technology today.

Henning professionally used 18 different programming lang-
uages and created a language for the insurance industry that
became a de facto standard. He is a second-generation hacker:
his father happily programmed ALGOL 60 on a Z 23.

Henning gave keynotes and talks on five continents. Some
people say they love his books, which is rad.

Reach him at hd@lexon.tech

